ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndd Unicode version

Theorem op2ndd 6163
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
op1st.1  |-  A  e. 
_V
op1st.2  |-  B  e. 
_V
Assertion
Ref Expression
op2ndd  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  B )

Proof of Theorem op2ndd
StepHypRef Expression
1 fveq2 5527 . 2  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  ( 2nd `  <. A ,  B >. ) )
2 op1st.1 . . 3  |-  A  e. 
_V
3 op1st.2 . . 3  |-  B  e. 
_V
42, 3op2nd 6161 . 2  |-  ( 2nd `  <. A ,  B >. )  =  B
51, 4eqtrdi 2236 1  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   _Vcvv 2749   <.cop 3607   ` cfv 5228   2ndc2nd 6153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fv 5236  df-2nd 6155
This theorem is referenced by:  xp2nd  6180  sbcopeq1a  6201  csbopeq1a  6202  eloprabi  6210  mpomptsx  6211  dmmpossx  6213  fmpox  6214  fmpoco  6230  df2nd2  6234  xporderlem  6245  xpf1o  6857  frecuzrdgtcl  10425  frecuzrdgfunlem  10432  fisumcom2  11459  fprodcom2fi  11647  txbas  14029  cnmpt2nd  14060  txhmeo  14090
  Copyright terms: Public domain W3C validator