| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndd | Unicode version | ||
| Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| op1st.1 |
|
| op1st.2 |
|
| Ref | Expression |
|---|---|
| op2ndd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5589 |
. 2
| |
| 2 | op1st.1 |
. . 3
| |
| 3 | op1st.2 |
. . 3
| |
| 4 | 2, 3 | op2nd 6246 |
. 2
|
| 5 | 1, 4 | eqtrdi 2255 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fv 5288 df-2nd 6240 |
| This theorem is referenced by: xp2nd 6265 sbcopeq1a 6286 csbopeq1a 6287 eloprabi 6295 mpomptsx 6296 dmmpossx 6298 fmpox 6299 fmpoco 6315 df2nd2 6319 xporderlem 6330 xpf1o 6956 frecuzrdgtcl 10579 frecuzrdgfunlem 10586 fisumcom2 11824 fprodcom2fi 12012 txbas 14805 cnmpt2nd 14836 txhmeo 14866 |
| Copyright terms: Public domain | W3C validator |