| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndd | Unicode version | ||
| Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| op1st.1 |
|
| op1st.2 |
|
| Ref | Expression |
|---|---|
| op2ndd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5575 |
. 2
| |
| 2 | op1st.1 |
. . 3
| |
| 3 | op1st.2 |
. . 3
| |
| 4 | 2, 3 | op2nd 6232 |
. 2
|
| 5 | 1, 4 | eqtrdi 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fv 5278 df-2nd 6226 |
| This theorem is referenced by: xp2nd 6251 sbcopeq1a 6272 csbopeq1a 6273 eloprabi 6281 mpomptsx 6282 dmmpossx 6284 fmpox 6285 fmpoco 6301 df2nd2 6305 xporderlem 6316 xpf1o 6940 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 fisumcom2 11691 fprodcom2fi 11879 txbas 14672 cnmpt2nd 14703 txhmeo 14733 |
| Copyright terms: Public domain | W3C validator |