ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndd Unicode version

Theorem op2ndd 6293
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
op1st.1  |-  A  e. 
_V
op1st.2  |-  B  e. 
_V
Assertion
Ref Expression
op2ndd  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  B )

Proof of Theorem op2ndd
StepHypRef Expression
1 fveq2 5626 . 2  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  ( 2nd `  <. A ,  B >. ) )
2 op1st.1 . . 3  |-  A  e. 
_V
3 op1st.2 . . 3  |-  B  e. 
_V
42, 3op2nd 6291 . 2  |-  ( 2nd `  <. A ,  B >. )  =  B
51, 4eqtrdi 2278 1  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669   ` cfv 5317   2ndc2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-2nd 6285
This theorem is referenced by:  xp2nd  6310  sbcopeq1a  6331  csbopeq1a  6332  eloprabi  6340  mpomptsx  6341  dmmpossx  6343  fmpox  6344  fmpoco  6360  df2nd2  6364  xporderlem  6375  xpf1o  7001  frecuzrdgtcl  10629  frecuzrdgfunlem  10636  fisumcom2  11944  fprodcom2fi  12132  txbas  14926  cnmpt2nd  14957  txhmeo  14987
  Copyright terms: Public domain W3C validator