ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndd Unicode version

Theorem op2ndd 5920
Description: Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
op1st.1  |-  A  e. 
_V
op1st.2  |-  B  e. 
_V
Assertion
Ref Expression
op2ndd  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  B )

Proof of Theorem op2ndd
StepHypRef Expression
1 fveq2 5305 . 2  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  ( 2nd `  <. A ,  B >. ) )
2 op1st.1 . . 3  |-  A  e. 
_V
3 op1st.2 . . 3  |-  B  e. 
_V
42, 3op2nd 5918 . 2  |-  ( 2nd `  <. A ,  B >. )  =  B
51, 4syl6eq 2136 1  |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1289    e. wcel 1438   _Vcvv 2619   <.cop 3449   ` cfv 5015   2ndc2nd 5910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fv 5023  df-2nd 5912
This theorem is referenced by:  xp2nd  5937  sbcopeq1a  5957  csbopeq1a  5958  eloprabi  5966  mpt2mptsx  5967  dmmpt2ssx  5969  fmpt2x  5970  fmpt2co  5981  df2nd2  5985  xporderlem  5996  xpf1o  6558  frecuzrdgtcl  9815  frecuzrdgfunlem  9822  fisumcom2  10828
  Copyright terms: Public domain W3C validator