ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpowrd Unicode version

Theorem elovmpowrd 10978
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that  ph may depend on  z as well as on  v and  y. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypothesis
Ref Expression
elovmpowrd.o  |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )
Assertion
Ref Expression
elovmpowrd  |-  ( Z  e.  ( V O Y )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
Distinct variable groups:    v, V, y, z    v, Y, y, z    z, Z
Allowed substitution hints:    ph( y, z, v)    O( y, z, v)    Z( y, v)

Proof of Theorem elovmpowrd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elovmpowrd.o . . . 4  |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )
2 csbwrdg 10966 . . . . . . . 8  |-  ( v  e.  _V  ->  [_ v  /  x ]_Word  x  = Word  v )
32eqcomd 2202 . . . . . . 7  |-  ( v  e.  _V  -> Word  v  = 
[_ v  /  x ]_Word  x )
43adantr 276 . . . . . 6  |-  ( ( v  e.  _V  /\  y  e.  _V )  -> Word  v  =  [_ v  /  x ]_Word  x )
54rabeqdv 2757 . . . . 5  |-  ( ( v  e.  _V  /\  y  e.  _V )  ->  { z  e. Word  v  |  ph }  =  {
z  e.  [_ v  /  x ]_Word  x  |  ph } )
65mpoeq3ia 5988 . . . 4  |-  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )  =  ( v  e.  _V , 
y  e.  _V  |->  { z  e.  [_ v  /  x ]_Word  x  |  ph } )
71, 6eqtri 2217 . . 3  |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e.  [_ v  /  x ]_Word  x  | 
ph } )
8 csbwrdg 10966 . . . . 5  |-  ( V  e.  _V  ->  [_ V  /  x ]_Word  x  = Word  V )
9 wrdexg 10948 . . . . 5  |-  ( V  e.  _V  -> Word  V  e. 
_V )
108, 9eqeltrd 2273 . . . 4  |-  ( V  e.  _V  ->  [_ V  /  x ]_Word  x  e.  _V )
1110adantr 276 . . 3  |-  ( ( V  e.  _V  /\  Y  e.  _V )  ->  [_ V  /  x ]_Word  x  e.  _V )
127, 11elovmporab1w 6125 . 2  |-  ( Z  e.  ( V O Y )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. 
[_ V  /  x ]_Word  x ) )
138eleq2d 2266 . . . . 5  |-  ( V  e.  _V  ->  ( Z  e.  [_ V  /  x ]_Word  x  <->  Z  e. Word  V ) )
1413adantr 276 . . . 4  |-  ( ( V  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  [_ V  /  x ]_Word  x  <->  Z  e. Word  V ) )
15 id 19 . . . . 5  |-  ( ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
16153expia 1207 . . . 4  |-  ( ( V  e.  _V  /\  Y  e.  _V )  ->  ( Z  e. Word  V  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V )
) )
1714, 16sylbid 150 . . 3  |-  ( ( V  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  [_ V  /  x ]_Word  x  -> 
( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V )
) )
18173impia 1202 . 2  |-  ( ( V  e.  _V  /\  Y  e.  _V  /\  Z  e.  [_ V  /  x ]_Word  x )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
1912, 18syl 14 1  |-  ( Z  e.  ( V O Y )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763   [_csb 3084  (class class class)co 5923    e. cmpo 5925  Word cword 10937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-1o 6475  df-er 6593  df-map 6710  df-en 6801  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-fzo 10220  df-word 10938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator