ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovmpowrd Unicode version

Theorem elovmpowrd 10945
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that  ph may depend on  z as well as on  v and  y. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypothesis
Ref Expression
elovmpowrd.o  |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )
Assertion
Ref Expression
elovmpowrd  |-  ( Z  e.  ( V O Y )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
Distinct variable groups:    v, V, y, z    v, Y, y, z    z, Z
Allowed substitution hints:    ph( y, z, v)    O( y, z, v)    Z( y, v)

Proof of Theorem elovmpowrd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elovmpowrd.o . . . 4  |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )
2 csbwrdg 10933 . . . . . . . 8  |-  ( v  e.  _V  ->  [_ v  /  x ]_Word  x  = Word  v )
32eqcomd 2199 . . . . . . 7  |-  ( v  e.  _V  -> Word  v  = 
[_ v  /  x ]_Word  x )
43adantr 276 . . . . . 6  |-  ( ( v  e.  _V  /\  y  e.  _V )  -> Word  v  =  [_ v  /  x ]_Word  x )
54rabeqdv 2754 . . . . 5  |-  ( ( v  e.  _V  /\  y  e.  _V )  ->  { z  e. Word  v  |  ph }  =  {
z  e.  [_ v  /  x ]_Word  x  |  ph } )
65mpoeq3ia 5975 . . . 4  |-  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )  =  ( v  e.  _V , 
y  e.  _V  |->  { z  e.  [_ v  /  x ]_Word  x  |  ph } )
71, 6eqtri 2214 . . 3  |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e.  [_ v  /  x ]_Word  x  | 
ph } )
8 csbwrdg 10933 . . . . 5  |-  ( V  e.  _V  ->  [_ V  /  x ]_Word  x  = Word  V )
9 wrdexg 10915 . . . . 5  |-  ( V  e.  _V  -> Word  V  e. 
_V )
108, 9eqeltrd 2270 . . . 4  |-  ( V  e.  _V  ->  [_ V  /  x ]_Word  x  e.  _V )
1110adantr 276 . . 3  |-  ( ( V  e.  _V  /\  Y  e.  _V )  ->  [_ V  /  x ]_Word  x  e.  _V )
127, 11elovmporab1w 6111 . 2  |-  ( Z  e.  ( V O Y )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. 
[_ V  /  x ]_Word  x ) )
138eleq2d 2263 . . . . 5  |-  ( V  e.  _V  ->  ( Z  e.  [_ V  /  x ]_Word  x  <->  Z  e. Word  V ) )
1413adantr 276 . . . 4  |-  ( ( V  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  [_ V  /  x ]_Word  x  <->  Z  e. Word  V ) )
15 id 19 . . . . 5  |-  ( ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
16153expia 1207 . . . 4  |-  ( ( V  e.  _V  /\  Y  e.  _V )  ->  ( Z  e. Word  V  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V )
) )
1714, 16sylbid 150 . . 3  |-  ( ( V  e.  _V  /\  Y  e.  _V )  ->  ( Z  e.  [_ V  /  x ]_Word  x  -> 
( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V )
) )
18173impia 1202 . 2  |-  ( ( V  e.  _V  /\  Y  e.  _V  /\  Z  e.  [_ V  /  x ]_Word  x )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
1912, 18syl 14 1  |-  ( Z  e.  ( V O Y )  ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760   [_csb 3080  (class class class)co 5910    e. cmpo 5912  Word cword 10904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-recs 6349  df-frec 6435  df-1o 6460  df-er 6578  df-map 6695  df-en 6786  df-fin 6788  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-inn 8973  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-fzo 10199  df-word 10905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator