| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbwrdg | GIF version | ||
| Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| csbwrdg | ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 10938 | . . 3 ⊢ Word 𝑥 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} | |
| 2 | 1 | csbeq2i 3111 | . 2 ⊢ ⦋𝑆 / 𝑥⦌Word 𝑥 = ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} |
| 3 | sbcrex 3069 | . . . . 5 ⊢ ([𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥) | |
| 4 | sbcfg 5407 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ⦋𝑆 / 𝑥⦌𝑤:⦋𝑆 / 𝑥⦌(0..^𝑙)⟶⦋𝑆 / 𝑥⦌𝑥)) | |
| 5 | csbconstg 3098 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌𝑤 = 𝑤) | |
| 6 | csbconstg 3098 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌(0..^𝑙) = (0..^𝑙)) | |
| 7 | csbvarg 3112 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌𝑥 = 𝑆) | |
| 8 | 5, 6, 7 | feq123d 5399 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → (⦋𝑆 / 𝑥⦌𝑤:⦋𝑆 / 𝑥⦌(0..^𝑙)⟶⦋𝑆 / 𝑥⦌𝑥 ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
| 9 | 4, 8 | bitrd 188 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
| 10 | 9 | rexbidv 2498 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
| 11 | 3, 10 | bitrid 192 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
| 12 | 11 | abbidv 2314 | . . 3 ⊢ (𝑆 ∈ 𝑉 → {𝑤 ∣ [𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
| 13 | csbabg 3146 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ [𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}) | |
| 14 | df-word 10938 | . . . 4 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 15 | 14 | a1i 9 | . . 3 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
| 16 | 12, 13, 15 | 3eqtr4d 2239 | . 2 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = Word 𝑆) |
| 17 | 2, 16 | eqtrid 2241 | 1 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cab 2182 ∃wrex 2476 [wsbc 2989 ⦋csb 3084 ⟶wf 5255 (class class class)co 5923 0cc0 7881 ℕ0cn0 9251 ..^cfzo 10219 Word cword 10937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-word 10938 |
| This theorem is referenced by: elovmpowrd 10978 |
| Copyright terms: Public domain | W3C validator |