| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbwrdg | GIF version | ||
| Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| csbwrdg | ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-word 11059 | . . 3 ⊢ Word 𝑥 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} | |
| 2 | 1 | csbeq2i 3151 | . 2 ⊢ ⦋𝑆 / 𝑥⦌Word 𝑥 = ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} |
| 3 | sbcrex 3108 | . . . . 5 ⊢ ([𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥) | |
| 4 | sbcfg 5468 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ⦋𝑆 / 𝑥⦌𝑤:⦋𝑆 / 𝑥⦌(0..^𝑙)⟶⦋𝑆 / 𝑥⦌𝑥)) | |
| 5 | csbconstg 3138 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌𝑤 = 𝑤) | |
| 6 | csbconstg 3138 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌(0..^𝑙) = (0..^𝑙)) | |
| 7 | csbvarg 3152 | . . . . . . . 8 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌𝑥 = 𝑆) | |
| 8 | 5, 6, 7 | feq123d 5460 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → (⦋𝑆 / 𝑥⦌𝑤:⦋𝑆 / 𝑥⦌(0..^𝑙)⟶⦋𝑆 / 𝑥⦌𝑥 ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
| 9 | 4, 8 | bitrd 188 | . . . . . 6 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ 𝑤:(0..^𝑙)⟶𝑆)) |
| 10 | 9 | rexbidv 2531 | . . . . 5 ⊢ (𝑆 ∈ 𝑉 → (∃𝑙 ∈ ℕ0 [𝑆 / 𝑥]𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
| 11 | 3, 10 | bitrid 192 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ([𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)) |
| 12 | 11 | abbidv 2347 | . . 3 ⊢ (𝑆 ∈ 𝑉 → {𝑤 ∣ [𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
| 13 | csbabg 3186 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = {𝑤 ∣ [𝑆 / 𝑥]∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥}) | |
| 14 | df-word 11059 | . . . 4 ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} | |
| 15 | 14 | a1i 9 | . . 3 ⊢ (𝑆 ∈ 𝑉 → Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}) |
| 16 | 12, 13, 15 | 3eqtr4d 2272 | . 2 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌{𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑥} = Word 𝑆) |
| 17 | 2, 16 | eqtrid 2274 | 1 ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {cab 2215 ∃wrex 2509 [wsbc 3028 ⦋csb 3124 ⟶wf 5310 (class class class)co 5994 0cc0 7987 ℕ0cn0 9357 ..^cfzo 10326 Word cword 11058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4381 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-fun 5316 df-fn 5317 df-f 5318 df-word 11059 |
| This theorem is referenced by: elovmpowrd 11099 |
| Copyright terms: Public domain | W3C validator |