Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2t1e2 | Unicode version |
Description: 2 times 1 equals 2. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
2t1e2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 8909 | . 2 | |
2 | 1 | mulid1i 7882 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 (class class class)co 5826 c1 7735 cmul 7739 c2 8889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-mulcom 7835 ax-mulass 7837 ax-distr 7838 ax-1rid 7841 ax-cnre 7845 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-iota 5137 df-fv 5180 df-ov 5829 df-2 8897 |
This theorem is referenced by: decbin2 9440 qbtwnrelemcalc 10164 expubnd 10485 trirecip 11409 ege2le3 11579 cos2tsin 11659 cos2bnd 11668 odd2np1 11776 opoe 11798 flodddiv4 11837 pythagtriplem4 12158 sin0pilem2 13173 cos2pi 13195 coskpi 13239 |
Copyright terms: Public domain | W3C validator |