ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemloc Unicode version

Theorem dedekindeulemloc 13008
Description: Lemma for dedekindeu 13012. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss  |-  ( ph  ->  L  C_  RR )
dedekindeu.uss  |-  ( ph  ->  U  C_  RR )
dedekindeu.lm  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
dedekindeu.um  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
dedekindeu.lr  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindeu.ur  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindeu.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindeu.loc  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
Assertion
Ref Expression
dedekindeulemloc  |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
Distinct variable groups:    L, q, r, z    U, q, r, z    ph, q, x, y, z   
x, r, y
Allowed substitution hints:    ph( r)    U( x, y)    L( x, y)

Proof of Theorem dedekindeulemloc
StepHypRef Expression
1 breq2 3969 . . . . 5  |-  ( r  =  y  ->  (
x  <  r  <->  x  <  y ) )
2 eleq1w 2218 . . . . . 6  |-  ( r  =  y  ->  (
r  e.  U  <->  y  e.  U ) )
32orbi2d 780 . . . . 5  |-  ( r  =  y  ->  (
( x  e.  L  \/  r  e.  U
)  <->  ( x  e.  L  \/  y  e.  U ) ) )
41, 3imbi12d 233 . . . 4  |-  ( r  =  y  ->  (
( x  <  r  ->  ( x  e.  L  \/  r  e.  U
) )  <->  ( x  <  y  ->  ( x  e.  L  \/  y  e.  U ) ) ) )
5 breq1 3968 . . . . . . 7  |-  ( q  =  x  ->  (
q  <  r  <->  x  <  r ) )
6 eleq1w 2218 . . . . . . . 8  |-  ( q  =  x  ->  (
q  e.  L  <->  x  e.  L ) )
76orbi1d 781 . . . . . . 7  |-  ( q  =  x  ->  (
( q  e.  L  \/  r  e.  U
)  <->  ( x  e.  L  \/  r  e.  U ) ) )
85, 7imbi12d 233 . . . . . 6  |-  ( q  =  x  ->  (
( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  ( x  <  r  ->  ( x  e.  L  \/  r  e.  U ) ) ) )
98ralbidv 2457 . . . . 5  |-  ( q  =  x  ->  ( A. r  e.  RR  ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  A. r  e.  RR  ( x  < 
r  ->  ( x  e.  L  \/  r  e.  U ) ) ) )
10 dedekindeu.loc . . . . . 6  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
1110adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
12 simprl 521 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
139, 11, 12rspcdva 2821 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. r  e.  RR  ( x  <  r  -> 
( x  e.  L  \/  r  e.  U
) ) )
14 simprr 522 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  RR )
154, 13, 14rspcdva 2821 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  <  y  ->  ( x  e.  L  \/  y  e.  U
) ) )
16 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  x  e.  L )  ->  x  e.  L )
175rexbidv 2458 . . . . . . . . 9  |-  ( q  =  x  ->  ( E. r  e.  L  q  <  r  <->  E. r  e.  L  x  <  r ) )
186, 17bibi12d 234 . . . . . . . 8  |-  ( q  =  x  ->  (
( q  e.  L  <->  E. r  e.  L  q  <  r )  <->  ( x  e.  L  <->  E. r  e.  L  x  <  r ) ) )
19 dedekindeu.lr . . . . . . . . 9  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
2019ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  x  e.  L )  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
2112adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  x  e.  L )  ->  x  e.  RR )
2218, 20, 21rspcdva 2821 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  x  e.  L )  ->  (
x  e.  L  <->  E. r  e.  L  x  <  r ) )
2316, 22mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  x  e.  L )  ->  E. r  e.  L  x  <  r )
24 breq2 3969 . . . . . . 7  |-  ( r  =  z  ->  (
x  <  r  <->  x  <  z ) )
2524cbvrexv 2681 . . . . . 6  |-  ( E. r  e.  L  x  <  r  <->  E. z  e.  L  x  <  z )
2623, 25sylib 121 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  x  e.  L )  ->  E. z  e.  L  x  <  z )
2726ex 114 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  e.  L  ->  E. z  e.  L  x  <  z ) )
28 dedekindeu.lss . . . . . . 7  |-  ( ph  ->  L  C_  RR )
2928ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  L  C_  RR )
30 dedekindeu.uss . . . . . . 7  |-  ( ph  ->  U  C_  RR )
3130ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  U  C_  RR )
32 dedekindeu.lm . . . . . . 7  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
3332ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  E. q  e.  RR  q  e.  L
)
34 dedekindeu.um . . . . . . 7  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
3534ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  E. r  e.  RR  r  e.  U
)
3619ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
37 dedekindeu.ur . . . . . . 7  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
3837ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
39 dedekindeu.disj . . . . . . 7  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
4039ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  ( L  i^i  U )  =  (/) )
4110ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  A. q  e.  RR  A. r  e.  RR  ( q  < 
r  ->  ( q  e.  L  \/  r  e.  U ) ) )
42 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  y  e.  U )
4329, 31, 33, 35, 36, 38, 40, 41, 42dedekindeulemuub 13006 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  y  e.  U )  ->  A. z  e.  L  z  <  y )
4443ex 114 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( y  e.  U  ->  A. z  e.  L  z  <  y ) )
4527, 44orim12d 776 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  e.  L  \/  y  e.  U )  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
4615, 45syld 45 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
4746ralrimivva 2539 1  |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436    i^i cin 3101    C_ wss 3102   (/)c0 3394   class class class wbr 3965   RRcr 7731    < clt 7912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-pre-ltwlin 7845
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4592  df-cnv 4594  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918
This theorem is referenced by:  dedekindeulemlub  13009
  Copyright terms: Public domain W3C validator