| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemloc | Unicode version | ||
| Description: Lemma for dedekindeu 14859. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.) | 
| Ref | Expression | 
|---|---|
| dedekindeu.lss | 
 | 
| dedekindeu.uss | 
 | 
| dedekindeu.lm | 
 | 
| dedekindeu.um | 
 | 
| dedekindeu.lr | 
 | 
| dedekindeu.ur | 
 | 
| dedekindeu.disj | 
 | 
| dedekindeu.loc | 
 | 
| Ref | Expression | 
|---|---|
| dedekindeulemloc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq2 4037 | 
. . . . 5
 | |
| 2 | eleq1w 2257 | 
. . . . . 6
 | |
| 3 | 2 | orbi2d 791 | 
. . . . 5
 | 
| 4 | 1, 3 | imbi12d 234 | 
. . . 4
 | 
| 5 | breq1 4036 | 
. . . . . . 7
 | |
| 6 | eleq1w 2257 | 
. . . . . . . 8
 | |
| 7 | 6 | orbi1d 792 | 
. . . . . . 7
 | 
| 8 | 5, 7 | imbi12d 234 | 
. . . . . 6
 | 
| 9 | 8 | ralbidv 2497 | 
. . . . 5
 | 
| 10 | dedekindeu.loc | 
. . . . . 6
 | |
| 11 | 10 | adantr 276 | 
. . . . 5
 | 
| 12 | simprl 529 | 
. . . . 5
 | |
| 13 | 9, 11, 12 | rspcdva 2873 | 
. . . 4
 | 
| 14 | simprr 531 | 
. . . 4
 | |
| 15 | 4, 13, 14 | rspcdva 2873 | 
. . 3
 | 
| 16 | simpr 110 | 
. . . . . . 7
 | |
| 17 | 5 | rexbidv 2498 | 
. . . . . . . . 9
 | 
| 18 | 6, 17 | bibi12d 235 | 
. . . . . . . 8
 | 
| 19 | dedekindeu.lr | 
. . . . . . . . 9
 | |
| 20 | 19 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 21 | 12 | adantr 276 | 
. . . . . . . 8
 | 
| 22 | 18, 20, 21 | rspcdva 2873 | 
. . . . . . 7
 | 
| 23 | 16, 22 | mpbid 147 | 
. . . . . 6
 | 
| 24 | breq2 4037 | 
. . . . . . 7
 | |
| 25 | 24 | cbvrexv 2730 | 
. . . . . 6
 | 
| 26 | 23, 25 | sylib 122 | 
. . . . 5
 | 
| 27 | 26 | ex 115 | 
. . . 4
 | 
| 28 | dedekindeu.lss | 
. . . . . . 7
 | |
| 29 | 28 | ad2antrr 488 | 
. . . . . 6
 | 
| 30 | dedekindeu.uss | 
. . . . . . 7
 | |
| 31 | 30 | ad2antrr 488 | 
. . . . . 6
 | 
| 32 | dedekindeu.lm | 
. . . . . . 7
 | |
| 33 | 32 | ad2antrr 488 | 
. . . . . 6
 | 
| 34 | dedekindeu.um | 
. . . . . . 7
 | |
| 35 | 34 | ad2antrr 488 | 
. . . . . 6
 | 
| 36 | 19 | ad2antrr 488 | 
. . . . . 6
 | 
| 37 | dedekindeu.ur | 
. . . . . . 7
 | |
| 38 | 37 | ad2antrr 488 | 
. . . . . 6
 | 
| 39 | dedekindeu.disj | 
. . . . . . 7
 | |
| 40 | 39 | ad2antrr 488 | 
. . . . . 6
 | 
| 41 | 10 | ad2antrr 488 | 
. . . . . 6
 | 
| 42 | simpr 110 | 
. . . . . 6
 | |
| 43 | 29, 31, 33, 35, 36, 38, 40, 41, 42 | dedekindeulemuub 14853 | 
. . . . 5
 | 
| 44 | 43 | ex 115 | 
. . . 4
 | 
| 45 | 27, 44 | orim12d 787 | 
. . 3
 | 
| 46 | 15, 45 | syld 45 | 
. 2
 | 
| 47 | 46 | ralrimivva 2579 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltwlin 7992 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 | 
| This theorem is referenced by: dedekindeulemlub 14856 | 
| Copyright terms: Public domain | W3C validator |