Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindeulemub | GIF version |
Description: Lemma for dedekindeu 13652. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
Ref | Expression |
---|---|
dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
Ref | Expression |
---|---|
dedekindeulemub | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedekindeu.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) | |
2 | eleq1w 2236 | . . . 4 ⊢ (𝑟 = 𝑎 → (𝑟 ∈ 𝑈 ↔ 𝑎 ∈ 𝑈)) | |
3 | 2 | cbvrexv 2702 | . . 3 ⊢ (∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈 ↔ ∃𝑎 ∈ ℝ 𝑎 ∈ 𝑈) |
4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ 𝑎 ∈ 𝑈) |
5 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ ℝ) | |
6 | dedekindeu.lss | . . . . 5 ⊢ (𝜑 → 𝐿 ⊆ ℝ) | |
7 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝐿 ⊆ ℝ) |
8 | dedekindeu.uss | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ ℝ) | |
9 | 8 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑈 ⊆ ℝ) |
10 | dedekindeu.lm | . . . . 5 ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) | |
11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
12 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
13 | dedekindeu.lr | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
15 | dedekindeu.ur | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
17 | dedekindeu.disj | . . . . 5 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → (𝐿 ∩ 𝑈) = ∅) |
19 | dedekindeu.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
20 | 19 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
21 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ 𝑈) | |
22 | 7, 9, 11, 12, 14, 16, 18, 20, 21 | dedekindeulemuub 13646 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) |
23 | brralrspcev 4056 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | |
24 | 5, 22, 23 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
25 | 4, 24 | rexlimddv 2597 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ∃wrex 2454 ∩ cin 3126 ⊆ wss 3127 ∅c0 3420 class class class wbr 3998 ℝcr 7785 < clt 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltwlin 7899 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 |
This theorem is referenced by: dedekindeulemlub 13649 |
Copyright terms: Public domain | W3C validator |