| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemub | GIF version | ||
| Description: Lemma for dedekindeu 15297. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| Ref | Expression |
|---|---|
| dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
| dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
| dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
| dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
| dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
| dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
| Ref | Expression |
|---|---|
| dedekindeulemub | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindeu.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) | |
| 2 | eleq1w 2290 | . . . 4 ⊢ (𝑟 = 𝑎 → (𝑟 ∈ 𝑈 ↔ 𝑎 ∈ 𝑈)) | |
| 3 | 2 | cbvrexv 2766 | . . 3 ⊢ (∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈 ↔ ∃𝑎 ∈ ℝ 𝑎 ∈ 𝑈) |
| 4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ 𝑎 ∈ 𝑈) |
| 5 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ ℝ) | |
| 6 | dedekindeu.lss | . . . . 5 ⊢ (𝜑 → 𝐿 ⊆ ℝ) | |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝐿 ⊆ ℝ) |
| 8 | dedekindeu.uss | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ ℝ) | |
| 9 | 8 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑈 ⊆ ℝ) |
| 10 | dedekindeu.lm | . . . . 5 ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
| 12 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
| 13 | dedekindeu.lr | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| 15 | dedekindeu.ur | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
| 16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| 17 | dedekindeu.disj | . . . . 5 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → (𝐿 ∩ 𝑈) = ∅) |
| 19 | dedekindeu.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
| 20 | 19 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
| 21 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ 𝑈) | |
| 22 | 7, 9, 11, 12, 14, 16, 18, 20, 21 | dedekindeulemuub 15291 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) |
| 23 | brralrspcev 4142 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | |
| 24 | 5, 22, 23 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| 25 | 4, 24 | rexlimddv 2653 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 class class class wbr 4083 ℝcr 7998 < clt 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltwlin 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: dedekindeulemlub 15294 |
| Copyright terms: Public domain | W3C validator |