ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemub GIF version

Theorem dedekindeulemub 13647
Description: Lemma for dedekindeu 13652. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemub (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
Distinct variable groups:   𝐿,𝑞,𝑟,𝑦   𝑥,𝐿,𝑟,𝑦   𝑈,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝑈(𝑥)

Proof of Theorem dedekindeulemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dedekindeu.um . . 3 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
2 eleq1w 2236 . . . 4 (𝑟 = 𝑎 → (𝑟𝑈𝑎𝑈))
32cbvrexv 2702 . . 3 (∃𝑟 ∈ ℝ 𝑟𝑈 ↔ ∃𝑎 ∈ ℝ 𝑎𝑈)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 ∈ ℝ 𝑎𝑈)
5 simprl 529 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑎 ∈ ℝ)
6 dedekindeu.lss . . . . 5 (𝜑𝐿 ⊆ ℝ)
76adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝐿 ⊆ ℝ)
8 dedekindeu.uss . . . . 5 (𝜑𝑈 ⊆ ℝ)
98adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑈 ⊆ ℝ)
10 dedekindeu.lm . . . . 5 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
1110adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑞 ∈ ℝ 𝑞𝐿)
121adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑟 ∈ ℝ 𝑟𝑈)
13 dedekindeu.lr . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
1413adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
15 dedekindeu.ur . . . . 5 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
1615adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
17 dedekindeu.disj . . . . 5 (𝜑 → (𝐿𝑈) = ∅)
1817adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → (𝐿𝑈) = ∅)
19 dedekindeu.loc . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
2019adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
21 simprr 531 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑎𝑈)
227, 9, 11, 12, 14, 16, 18, 20, 21dedekindeulemuub 13646 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑦𝐿 𝑦 < 𝑎)
23 brralrspcev 4056 . . 3 ((𝑎 ∈ ℝ ∧ ∀𝑦𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
245, 22, 23syl2anc 411 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
254, 24rexlimddv 2597 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2146  wral 2453  wrex 2454  cin 3126  wss 3127  c0 3420   class class class wbr 3998  cr 7785   < clt 7966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltwlin 7899
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972
This theorem is referenced by:  dedekindeulemlub  13649
  Copyright terms: Public domain W3C validator