ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemub GIF version

Theorem dedekindeulemub 14854
Description: Lemma for dedekindeu 14859. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemub (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
Distinct variable groups:   𝐿,𝑞,𝑟,𝑦   𝑥,𝐿,𝑟,𝑦   𝑈,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝑈(𝑥)

Proof of Theorem dedekindeulemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dedekindeu.um . . 3 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
2 eleq1w 2257 . . . 4 (𝑟 = 𝑎 → (𝑟𝑈𝑎𝑈))
32cbvrexv 2730 . . 3 (∃𝑟 ∈ ℝ 𝑟𝑈 ↔ ∃𝑎 ∈ ℝ 𝑎𝑈)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 ∈ ℝ 𝑎𝑈)
5 simprl 529 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑎 ∈ ℝ)
6 dedekindeu.lss . . . . 5 (𝜑𝐿 ⊆ ℝ)
76adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝐿 ⊆ ℝ)
8 dedekindeu.uss . . . . 5 (𝜑𝑈 ⊆ ℝ)
98adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑈 ⊆ ℝ)
10 dedekindeu.lm . . . . 5 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
1110adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑞 ∈ ℝ 𝑞𝐿)
121adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑟 ∈ ℝ 𝑟𝑈)
13 dedekindeu.lr . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
1413adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
15 dedekindeu.ur . . . . 5 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
1615adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
17 dedekindeu.disj . . . . 5 (𝜑 → (𝐿𝑈) = ∅)
1817adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → (𝐿𝑈) = ∅)
19 dedekindeu.loc . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
2019adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
21 simprr 531 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑎𝑈)
227, 9, 11, 12, 14, 16, 18, 20, 21dedekindeulemuub 14853 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑦𝐿 𝑦 < 𝑎)
23 brralrspcev 4091 . . 3 ((𝑎 ∈ ℝ ∧ ∀𝑦𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
245, 22, 23syl2anc 411 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
254, 24rexlimddv 2619 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cin 3156  wss 3157  c0 3450   class class class wbr 4033  cr 7878   < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltwlin 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  dedekindeulemlub  14856
  Copyright terms: Public domain W3C validator