ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemub GIF version

Theorem dedekindeulemub 13137
Description: Lemma for dedekindeu 13142. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemub (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
Distinct variable groups:   𝐿,𝑞,𝑟,𝑦   𝑥,𝐿,𝑟,𝑦   𝑈,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝑈(𝑥)

Proof of Theorem dedekindeulemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dedekindeu.um . . 3 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
2 eleq1w 2225 . . . 4 (𝑟 = 𝑎 → (𝑟𝑈𝑎𝑈))
32cbvrexv 2690 . . 3 (∃𝑟 ∈ ℝ 𝑟𝑈 ↔ ∃𝑎 ∈ ℝ 𝑎𝑈)
41, 3sylib 121 . 2 (𝜑 → ∃𝑎 ∈ ℝ 𝑎𝑈)
5 simprl 521 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑎 ∈ ℝ)
6 dedekindeu.lss . . . . 5 (𝜑𝐿 ⊆ ℝ)
76adantr 274 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝐿 ⊆ ℝ)
8 dedekindeu.uss . . . . 5 (𝜑𝑈 ⊆ ℝ)
98adantr 274 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑈 ⊆ ℝ)
10 dedekindeu.lm . . . . 5 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
1110adantr 274 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑞 ∈ ℝ 𝑞𝐿)
121adantr 274 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑟 ∈ ℝ 𝑟𝑈)
13 dedekindeu.lr . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
1413adantr 274 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
15 dedekindeu.ur . . . . 5 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
1615adantr 274 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
17 dedekindeu.disj . . . . 5 (𝜑 → (𝐿𝑈) = ∅)
1817adantr 274 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → (𝐿𝑈) = ∅)
19 dedekindeu.loc . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
2019adantr 274 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
21 simprr 522 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑎𝑈)
227, 9, 11, 12, 14, 16, 18, 20, 21dedekindeulemuub 13136 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑦𝐿 𝑦 < 𝑎)
23 brralrspcev 4034 . . 3 ((𝑎 ∈ ℝ ∧ ∀𝑦𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
245, 22, 23syl2anc 409 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
254, 24rexlimddv 2586 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1342  wcel 2135  wral 2442  wrex 2443  cin 3110  wss 3111  c0 3404   class class class wbr 3976  cr 7743   < clt 7924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-pre-ltwlin 7857
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-xp 4604  df-cnv 4606  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930
This theorem is referenced by:  dedekindeulemlub  13139
  Copyright terms: Public domain W3C validator