ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemub GIF version

Theorem dedekindeulemub 15205
Description: Lemma for dedekindeu 15210. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemub (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
Distinct variable groups:   𝐿,𝑞,𝑟,𝑦   𝑥,𝐿,𝑟,𝑦   𝑈,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝑈(𝑥)

Proof of Theorem dedekindeulemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dedekindeu.um . . 3 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
2 eleq1w 2268 . . . 4 (𝑟 = 𝑎 → (𝑟𝑈𝑎𝑈))
32cbvrexv 2743 . . 3 (∃𝑟 ∈ ℝ 𝑟𝑈 ↔ ∃𝑎 ∈ ℝ 𝑎𝑈)
41, 3sylib 122 . 2 (𝜑 → ∃𝑎 ∈ ℝ 𝑎𝑈)
5 simprl 529 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑎 ∈ ℝ)
6 dedekindeu.lss . . . . 5 (𝜑𝐿 ⊆ ℝ)
76adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝐿 ⊆ ℝ)
8 dedekindeu.uss . . . . 5 (𝜑𝑈 ⊆ ℝ)
98adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑈 ⊆ ℝ)
10 dedekindeu.lm . . . . 5 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
1110adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑞 ∈ ℝ 𝑞𝐿)
121adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑟 ∈ ℝ 𝑟𝑈)
13 dedekindeu.lr . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
1413adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
15 dedekindeu.ur . . . . 5 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
1615adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
17 dedekindeu.disj . . . . 5 (𝜑 → (𝐿𝑈) = ∅)
1817adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → (𝐿𝑈) = ∅)
19 dedekindeu.loc . . . . 5 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
2019adantr 276 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
21 simprr 531 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → 𝑎𝑈)
227, 9, 11, 12, 14, 16, 18, 20, 21dedekindeulemuub 15204 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∀𝑦𝐿 𝑦 < 𝑎)
23 brralrspcev 4118 . . 3 ((𝑎 ∈ ℝ ∧ ∀𝑦𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
245, 22, 23syl2anc 411 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎𝑈)) → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
254, 24rexlimddv 2630 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2178  wral 2486  wrex 2487  cin 3173  wss 3174  c0 3468   class class class wbr 4059  cr 7959   < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltwlin 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  dedekindeulemlub  15207
  Copyright terms: Public domain W3C validator