| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemub | GIF version | ||
| Description: Lemma for dedekindeu 14859. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| Ref | Expression |
|---|---|
| dedekindeu.lss | ⊢ (𝜑 → 𝐿 ⊆ ℝ) |
| dedekindeu.uss | ⊢ (𝜑 → 𝑈 ⊆ ℝ) |
| dedekindeu.lm | ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
| dedekindeu.um | ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
| dedekindeu.lr | ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| dedekindeu.ur | ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| dedekindeu.disj | ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
| dedekindeu.loc | ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
| Ref | Expression |
|---|---|
| dedekindeulemub | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindeu.um | . . 3 ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) | |
| 2 | eleq1w 2257 | . . . 4 ⊢ (𝑟 = 𝑎 → (𝑟 ∈ 𝑈 ↔ 𝑎 ∈ 𝑈)) | |
| 3 | 2 | cbvrexv 2730 | . . 3 ⊢ (∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈 ↔ ∃𝑎 ∈ ℝ 𝑎 ∈ 𝑈) |
| 4 | 1, 3 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ 𝑎 ∈ 𝑈) |
| 5 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ ℝ) | |
| 6 | dedekindeu.lss | . . . . 5 ⊢ (𝜑 → 𝐿 ⊆ ℝ) | |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝐿 ⊆ ℝ) |
| 8 | dedekindeu.uss | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ ℝ) | |
| 9 | 8 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑈 ⊆ ℝ) |
| 10 | dedekindeu.lm | . . . . 5 ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
| 12 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
| 13 | dedekindeu.lr | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) | |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| 15 | dedekindeu.ur | . . . . 5 ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) | |
| 16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
| 17 | dedekindeu.disj | . . . . 5 ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) | |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → (𝐿 ∩ 𝑈) = ∅) |
| 19 | dedekindeu.loc | . . . . 5 ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) | |
| 20 | 19 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
| 21 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → 𝑎 ∈ 𝑈) | |
| 22 | 7, 9, 11, 12, 14, 16, 18, 20, 21 | dedekindeulemuub 14853 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) |
| 23 | brralrspcev 4091 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ ∀𝑦 ∈ 𝐿 𝑦 < 𝑎) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) | |
| 24 | 5, 22, 23 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑎 ∈ 𝑈)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| 25 | 4, 24 | rexlimddv 2619 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 class class class wbr 4033 ℝcr 7878 < clt 8061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltwlin 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: dedekindeulemlub 14856 |
| Copyright terms: Public domain | W3C validator |