| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemuub | Unicode version | ||
| Description: Lemma for dedekindeu 15297. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.) |
| Ref | Expression |
|---|---|
| dedekindeu.lss |
|
| dedekindeu.uss |
|
| dedekindeu.lm |
|
| dedekindeu.um |
|
| dedekindeu.lr |
|
| dedekindeu.ur |
|
| dedekindeu.disj |
|
| dedekindeu.loc |
|
| dedekindeulemuub.u |
|
| Ref | Expression |
|---|---|
| dedekindeulemuub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindeulemuub.u |
. . 3
| |
| 2 | eleq1 2292 |
. . . . 5
| |
| 3 | breq2 4087 |
. . . . . 6
| |
| 4 | 3 | rexbidv 2531 |
. . . . 5
|
| 5 | 2, 4 | bibi12d 235 |
. . . 4
|
| 6 | dedekindeu.ur |
. . . 4
| |
| 7 | dedekindeu.uss |
. . . . 5
| |
| 8 | 7, 1 | sseldd 3225 |
. . . 4
|
| 9 | 5, 6, 8 | rspcdva 2912 |
. . 3
|
| 10 | 1, 9 | mpbid 147 |
. 2
|
| 11 | dedekindeu.lss |
. . . . . 6
| |
| 12 | 11 | ad2antrr 488 |
. . . . 5
|
| 13 | simpr 110 |
. . . . 5
| |
| 14 | 12, 13 | sseldd 3225 |
. . . 4
|
| 15 | 7 | ad2antrr 488 |
. . . . 5
|
| 16 | simplrl 535 |
. . . . 5
| |
| 17 | 15, 16 | sseldd 3225 |
. . . 4
|
| 18 | 8 | ad2antrr 488 |
. . . 4
|
| 19 | breq1 4086 |
. . . . . . . . . 10
| |
| 20 | 19 | rspcev 2907 |
. . . . . . . . 9
|
| 21 | 16, 20 | sylan 283 |
. . . . . . . 8
|
| 22 | 19 | cbvrexv 2766 |
. . . . . . . 8
|
| 23 | 21, 22 | sylib 122 |
. . . . . . 7
|
| 24 | eleq1 2292 |
. . . . . . . . 9
| |
| 25 | breq2 4087 |
. . . . . . . . . 10
| |
| 26 | 25 | rexbidv 2531 |
. . . . . . . . 9
|
| 27 | 24, 26 | bibi12d 235 |
. . . . . . . 8
|
| 28 | 6 | ad3antrrr 492 |
. . . . . . . 8
|
| 29 | 14 | adantr 276 |
. . . . . . . 8
|
| 30 | 27, 28, 29 | rspcdva 2912 |
. . . . . . 7
|
| 31 | 23, 30 | mpbird 167 |
. . . . . 6
|
| 32 | simplll 533 |
. . . . . . 7
| |
| 33 | 13 | adantr 276 |
. . . . . . 7
|
| 34 | dedekindeu.disj |
. . . . . . . . 9
| |
| 35 | disj 3540 |
. . . . . . . . 9
| |
| 36 | 34, 35 | sylib 122 |
. . . . . . . 8
|
| 37 | 36 | r19.21bi 2618 |
. . . . . . 7
|
| 38 | 32, 33, 37 | syl2anc 411 |
. . . . . 6
|
| 39 | 31, 38 | pm2.65da 665 |
. . . . 5
|
| 40 | 14, 17, 39 | nltled 8267 |
. . . 4
|
| 41 | simplrr 536 |
. . . 4
| |
| 42 | 14, 17, 18, 40, 41 | lelttrd 8271 |
. . 3
|
| 43 | 42 | ralrimiva 2603 |
. 2
|
| 44 | 10, 43 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltwlin 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: dedekindeulemub 15292 dedekindeulemloc 15293 |
| Copyright terms: Public domain | W3C validator |