ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemuub Unicode version

Theorem dedekindeulemuub 13389
Description: Lemma for dedekindeu 13395. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
Hypotheses
Ref Expression
dedekindeu.lss  |-  ( ph  ->  L  C_  RR )
dedekindeu.uss  |-  ( ph  ->  U  C_  RR )
dedekindeu.lm  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
dedekindeu.um  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
dedekindeu.lr  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindeu.ur  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindeu.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindeu.loc  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
dedekindeulemuub.u  |-  ( ph  ->  A  e.  U )
Assertion
Ref Expression
dedekindeulemuub  |-  ( ph  ->  A. z  e.  L  z  <  A )
Distinct variable groups:    A, q, r, z    L, q, z    U, q, z, r    ph, q,
z
Allowed substitution hints:    ph( r)    L( r)

Proof of Theorem dedekindeulemuub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindeulemuub.u . . 3  |-  ( ph  ->  A  e.  U )
2 eleq1 2233 . . . . 5  |-  ( r  =  A  ->  (
r  e.  U  <->  A  e.  U ) )
3 breq2 3993 . . . . . 6  |-  ( r  =  A  ->  (
q  <  r  <->  q  <  A ) )
43rexbidv 2471 . . . . 5  |-  ( r  =  A  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  A ) )
52, 4bibi12d 234 . . . 4  |-  ( r  =  A  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( A  e.  U  <->  E. q  e.  U  q  <  A ) ) )
6 dedekindeu.ur . . . 4  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
7 dedekindeu.uss . . . . 5  |-  ( ph  ->  U  C_  RR )
87, 1sseldd 3148 . . . 4  |-  ( ph  ->  A  e.  RR )
95, 6, 8rspcdva 2839 . . 3  |-  ( ph  ->  ( A  e.  U  <->  E. q  e.  U  q  <  A ) )
101, 9mpbid 146 . 2  |-  ( ph  ->  E. q  e.  U  q  <  A )
11 dedekindeu.lss . . . . . 6  |-  ( ph  ->  L  C_  RR )
1211ad2antrr 485 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  L  C_  RR )
13 simpr 109 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  z  e.  L )
1412, 13sseldd 3148 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  z  e.  RR )
157ad2antrr 485 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  U  C_  RR )
16 simplrl 530 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  q  e.  U )
1715, 16sseldd 3148 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  q  e.  RR )
188ad2antrr 485 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  A  e.  RR )
19 breq1 3992 . . . . . . . . . 10  |-  ( a  =  q  ->  (
a  <  z  <->  q  <  z ) )
2019rspcev 2834 . . . . . . . . 9  |-  ( ( q  e.  U  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
2116, 20sylan 281 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
2219cbvrexv 2697 . . . . . . . 8  |-  ( E. a  e.  U  a  <  z  <->  E. q  e.  U  q  <  z )
2321, 22sylib 121 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. q  e.  U  q  <  z )
24 eleq1 2233 . . . . . . . . 9  |-  ( r  =  z  ->  (
r  e.  U  <->  z  e.  U ) )
25 breq2 3993 . . . . . . . . . 10  |-  ( r  =  z  ->  (
q  <  r  <->  q  <  z ) )
2625rexbidv 2471 . . . . . . . . 9  |-  ( r  =  z  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  z ) )
2724, 26bibi12d 234 . . . . . . . 8  |-  ( r  =  z  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( z  e.  U  <->  E. q  e.  U  q  <  z ) ) )
286ad3antrrr 489 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
2914adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  RR )
3027, 28, 29rspcdva 2839 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  (
z  e.  U  <->  E. q  e.  U  q  <  z ) )
3123, 30mpbird 166 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  U )
32 simplll 528 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  ph )
3313adantr 274 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  L )
34 dedekindeu.disj . . . . . . . . 9  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
35 disj 3463 . . . . . . . . 9  |-  ( ( L  i^i  U )  =  (/)  <->  A. z  e.  L  -.  z  e.  U
)
3634, 35sylib 121 . . . . . . . 8  |-  ( ph  ->  A. z  e.  L  -.  z  e.  U
)
3736r19.21bi 2558 . . . . . . 7  |-  ( (
ph  /\  z  e.  L )  ->  -.  z  e.  U )
3832, 33, 37syl2anc 409 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  -.  z  e.  U )
3931, 38pm2.65da 656 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  -.  q  <  z )
4014, 17, 39nltled 8040 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  z  <_  q )
41 simplrr 531 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  q  <  A )
4214, 17, 18, 40, 41lelttrd 8044 . . 3  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  z  <  A )
4342ralrimiva 2543 . 2  |-  ( (
ph  /\  ( q  e.  U  /\  q  <  A ) )  ->  A. z  e.  L  z  <  A )
4410, 43rexlimddv 2592 1  |-  ( ph  ->  A. z  e.  L  z  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    i^i cin 3120    C_ wss 3121   (/)c0 3414   class class class wbr 3989   RRcr 7773    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltwlin 7887
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by:  dedekindeulemub  13390  dedekindeulemloc  13391
  Copyright terms: Public domain W3C validator