ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemuub Unicode version

Theorem dedekindeulemuub 14853
Description: Lemma for dedekindeu 14859. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
Hypotheses
Ref Expression
dedekindeu.lss  |-  ( ph  ->  L  C_  RR )
dedekindeu.uss  |-  ( ph  ->  U  C_  RR )
dedekindeu.lm  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
dedekindeu.um  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
dedekindeu.lr  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindeu.ur  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindeu.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindeu.loc  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
dedekindeulemuub.u  |-  ( ph  ->  A  e.  U )
Assertion
Ref Expression
dedekindeulemuub  |-  ( ph  ->  A. z  e.  L  z  <  A )
Distinct variable groups:    A, q, r, z    L, q, z    U, q, z, r    ph, q,
z
Allowed substitution hints:    ph( r)    L( r)

Proof of Theorem dedekindeulemuub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindeulemuub.u . . 3  |-  ( ph  ->  A  e.  U )
2 eleq1 2259 . . . . 5  |-  ( r  =  A  ->  (
r  e.  U  <->  A  e.  U ) )
3 breq2 4037 . . . . . 6  |-  ( r  =  A  ->  (
q  <  r  <->  q  <  A ) )
43rexbidv 2498 . . . . 5  |-  ( r  =  A  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  A ) )
52, 4bibi12d 235 . . . 4  |-  ( r  =  A  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( A  e.  U  <->  E. q  e.  U  q  <  A ) ) )
6 dedekindeu.ur . . . 4  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
7 dedekindeu.uss . . . . 5  |-  ( ph  ->  U  C_  RR )
87, 1sseldd 3184 . . . 4  |-  ( ph  ->  A  e.  RR )
95, 6, 8rspcdva 2873 . . 3  |-  ( ph  ->  ( A  e.  U  <->  E. q  e.  U  q  <  A ) )
101, 9mpbid 147 . 2  |-  ( ph  ->  E. q  e.  U  q  <  A )
11 dedekindeu.lss . . . . . 6  |-  ( ph  ->  L  C_  RR )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  L  C_  RR )
13 simpr 110 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  z  e.  L )
1412, 13sseldd 3184 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  z  e.  RR )
157ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  U  C_  RR )
16 simplrl 535 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  q  e.  U )
1715, 16sseldd 3184 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  q  e.  RR )
188ad2antrr 488 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  A  e.  RR )
19 breq1 4036 . . . . . . . . . 10  |-  ( a  =  q  ->  (
a  <  z  <->  q  <  z ) )
2019rspcev 2868 . . . . . . . . 9  |-  ( ( q  e.  U  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
2116, 20sylan 283 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. a  e.  U  a  <  z )
2219cbvrexv 2730 . . . . . . . 8  |-  ( E. a  e.  U  a  <  z  <->  E. q  e.  U  q  <  z )
2321, 22sylib 122 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  E. q  e.  U  q  <  z )
24 eleq1 2259 . . . . . . . . 9  |-  ( r  =  z  ->  (
r  e.  U  <->  z  e.  U ) )
25 breq2 4037 . . . . . . . . . 10  |-  ( r  =  z  ->  (
q  <  r  <->  q  <  z ) )
2625rexbidv 2498 . . . . . . . . 9  |-  ( r  =  z  ->  ( E. q  e.  U  q  <  r  <->  E. q  e.  U  q  <  z ) )
2724, 26bibi12d 235 . . . . . . . 8  |-  ( r  =  z  ->  (
( r  e.  U  <->  E. q  e.  U  q  <  r )  <->  ( z  e.  U  <->  E. q  e.  U  q  <  z ) ) )
286ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
2914adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  RR )
3027, 28, 29rspcdva 2873 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  (
z  e.  U  <->  E. q  e.  U  q  <  z ) )
3123, 30mpbird 167 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  U )
32 simplll 533 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  ph )
3313adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  z  e.  L )
34 dedekindeu.disj . . . . . . . . 9  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
35 disj 3499 . . . . . . . . 9  |-  ( ( L  i^i  U )  =  (/)  <->  A. z  e.  L  -.  z  e.  U
)
3634, 35sylib 122 . . . . . . . 8  |-  ( ph  ->  A. z  e.  L  -.  z  e.  U
)
3736r19.21bi 2585 . . . . . . 7  |-  ( (
ph  /\  z  e.  L )  ->  -.  z  e.  U )
3832, 33, 37syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  ( q  e.  U  /\  q  <  A ) )  /\  z  e.  L )  /\  q  <  z )  ->  -.  z  e.  U )
3931, 38pm2.65da 662 . . . . 5  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  -.  q  <  z )
4014, 17, 39nltled 8147 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  z  <_  q )
41 simplrr 536 . . . 4  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  q  <  A )
4214, 17, 18, 40, 41lelttrd 8151 . . 3  |-  ( ( ( ph  /\  (
q  e.  U  /\  q  <  A ) )  /\  z  e.  L
)  ->  z  <  A )
4342ralrimiva 2570 . 2  |-  ( (
ph  /\  ( q  e.  U  /\  q  <  A ) )  ->  A. z  e.  L  z  <  A )
4410, 43rexlimddv 2619 1  |-  ( ph  ->  A. z  e.  L  z  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    i^i cin 3156    C_ wss 3157   (/)c0 3450   class class class wbr 4033   RRcr 7878    < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltwlin 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  dedekindeulemub  14854  dedekindeulemloc  14855
  Copyright terms: Public domain W3C validator