ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab4 Unicode version

Theorem dfoprab4 5962
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfoprab4.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab4  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Distinct variable groups:    x, w, y, A    w, B, x, y    ph, x, y    ps, w    z, w, x, y
Allowed substitution hints:    ph( z, w)    ps( x, y, z)    A( z)    B( z)

Proof of Theorem dfoprab4
StepHypRef Expression
1 xpss 4546 . . . . . 6  |-  ( A  X.  B )  C_  ( _V  X.  _V )
21sseli 3021 . . . . 5  |-  ( w  e.  ( A  X.  B )  ->  w  e.  ( _V  X.  _V ) )
32adantr 270 . . . 4  |-  ( ( w  e.  ( A  X.  B )  /\  ph )  ->  w  e.  ( _V  X.  _V )
)
43pm4.71ri 384 . . 3  |-  ( ( w  e.  ( A  X.  B )  /\  ph )  <->  ( w  e.  ( _V  X.  _V )  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) )
54opabbii 3905 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) }
6 eleq1 2150 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
7 opelxp 4467 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
86, 7syl6bb 194 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
9 dfoprab4.1 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
108, 9anbi12d 457 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  ( A  X.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) ) )
1110dfoprab3 5961 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  (
w  e.  ( A  X.  B )  /\  ph ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
125, 11eqtri 2108 1  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   _Vcvv 2619   <.cop 3449   {copab 3898    X. cxp 4436   {coprab 5653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fo 5021  df-fv 5023  df-oprab 5656  df-1st 5911  df-2nd 5912
This theorem is referenced by:  dfoprab4f  5963  dfxp3  5964
  Copyright terms: Public domain W3C validator