ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab4 Unicode version

Theorem dfoprab4 6338
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfoprab4.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab4  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Distinct variable groups:    x, w, y, A    w, B, x, y    ph, x, y    ps, w    z, w, x, y
Allowed substitution hints:    ph( z, w)    ps( x, y, z)    A( z)    B( z)

Proof of Theorem dfoprab4
StepHypRef Expression
1 xpss 4827 . . . . . 6  |-  ( A  X.  B )  C_  ( _V  X.  _V )
21sseli 3220 . . . . 5  |-  ( w  e.  ( A  X.  B )  ->  w  e.  ( _V  X.  _V ) )
32adantr 276 . . . 4  |-  ( ( w  e.  ( A  X.  B )  /\  ph )  ->  w  e.  ( _V  X.  _V )
)
43pm4.71ri 392 . . 3  |-  ( ( w  e.  ( A  X.  B )  /\  ph )  <->  ( w  e.  ( _V  X.  _V )  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) )
54opabbii 4151 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) }
6 eleq1 2292 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
7 opelxp 4749 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
86, 7bitrdi 196 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
9 dfoprab4.1 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
108, 9anbi12d 473 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  ( A  X.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) ) )
1110dfoprab3 6337 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  (
w  e.  ( A  X.  B )  /\  ph ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
125, 11eqtri 2250 1  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669   {copab 4144    X. cxp 4717   {coprab 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-oprab 6005  df-1st 6286  df-2nd 6287
This theorem is referenced by:  dfoprab4f  6339  dfxp3  6340
  Copyright terms: Public domain W3C validator