ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab4 Unicode version

Theorem dfoprab4 6278
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfoprab4.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab4  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Distinct variable groups:    x, w, y, A    w, B, x, y    ph, x, y    ps, w    z, w, x, y
Allowed substitution hints:    ph( z, w)    ps( x, y, z)    A( z)    B( z)

Proof of Theorem dfoprab4
StepHypRef Expression
1 xpss 4783 . . . . . 6  |-  ( A  X.  B )  C_  ( _V  X.  _V )
21sseli 3189 . . . . 5  |-  ( w  e.  ( A  X.  B )  ->  w  e.  ( _V  X.  _V ) )
32adantr 276 . . . 4  |-  ( ( w  e.  ( A  X.  B )  /\  ph )  ->  w  e.  ( _V  X.  _V )
)
43pm4.71ri 392 . . 3  |-  ( ( w  e.  ( A  X.  B )  /\  ph )  <->  ( w  e.  ( _V  X.  _V )  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) )
54opabbii 4111 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) }
6 eleq1 2268 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
7 opelxp 4705 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
86, 7bitrdi 196 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
9 dfoprab4.1 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
108, 9anbi12d 473 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  ( A  X.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) ) )
1110dfoprab3 6277 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  (
w  e.  ( A  X.  B )  /\  ph ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
125, 11eqtri 2226 1  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   <.cop 3636   {copab 4104    X. cxp 4673   {coprab 5945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-oprab 5948  df-1st 6226  df-2nd 6227
This theorem is referenced by:  dfoprab4f  6279  dfxp3  6280
  Copyright terms: Public domain W3C validator