ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difopn GIF version

Theorem difopn 13479
Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
difopn ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem difopn
StepHypRef Expression
1 elssuni 3837 . . . . . 6 (𝐴𝐽𝐴 𝐽)
2 iscld.1 . . . . . 6 𝑋 = 𝐽
31, 2sseqtrrdi 3204 . . . . 5 (𝐴𝐽𝐴𝑋)
43adantr 276 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐴𝑋)
5 df-ss 3142 . . . 4 (𝐴𝑋 ↔ (𝐴𝑋) = 𝐴)
64, 5sylib 122 . . 3 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝑋) = 𝐴)
76difeq1d 3252 . 2 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝑋) ∖ 𝐵) = (𝐴𝐵))
8 indif2 3379 . . 3 (𝐴 ∩ (𝑋𝐵)) = ((𝐴𝑋) ∖ 𝐵)
9 cldrcl 13473 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
109adantl 277 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
11 simpl 109 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐴𝐽)
122cldopn 13478 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
1312adantl 277 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝑋𝐵) ∈ 𝐽)
14 inopn 13372 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽 ∧ (𝑋𝐵) ∈ 𝐽) → (𝐴 ∩ (𝑋𝐵)) ∈ 𝐽)
1510, 11, 13, 14syl3anc 1238 . . 3 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ (𝑋𝐵)) ∈ 𝐽)
168, 15eqeltrrid 2265 . 2 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝑋) ∖ 𝐵) ∈ 𝐽)
177, 16eqeltrrd 2255 1 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cdif 3126  cin 3128  wss 3129   cuni 3809  cfv 5215  Topctop 13366  Clsdccld 13463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-top 13367  df-cld 13466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator