| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difopn | GIF version | ||
| Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| difopn | ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 3883 | . . . . . 6 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | iscld.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | sseqtrrdi 3246 | . . . . 5 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ⊆ 𝑋) |
| 5 | df-ss 3183 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝐴 ∩ 𝑋) = 𝐴) | |
| 6 | 4, 5 | sylib 122 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝑋) = 𝐴) |
| 7 | 6 | difeq1d 3294 | . 2 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∩ 𝑋) ∖ 𝐵) = (𝐴 ∖ 𝐵)) |
| 8 | indif2 3421 | . . 3 ⊢ (𝐴 ∩ (𝑋 ∖ 𝐵)) = ((𝐴 ∩ 𝑋) ∖ 𝐵) | |
| 9 | cldrcl 14644 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 10 | 9 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
| 11 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ∈ 𝐽) | |
| 12 | 2 | cldopn 14649 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 13 | 12 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 14 | inopn 14545 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐵) ∈ 𝐽) → (𝐴 ∩ (𝑋 ∖ 𝐵)) ∈ 𝐽) | |
| 15 | 10, 11, 13, 14 | syl3anc 1250 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ (𝑋 ∖ 𝐵)) ∈ 𝐽) |
| 16 | 8, 15 | eqeltrrid 2294 | . 2 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∩ 𝑋) ∖ 𝐵) ∈ 𝐽) |
| 17 | 7, 16 | eqeltrrd 2284 | 1 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∖ cdif 3167 ∩ cin 3169 ⊆ wss 3170 ∪ cuni 3855 ‘cfv 5279 Topctop 14539 Clsdccld 14634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fn 5282 df-fv 5287 df-top 14540 df-cld 14637 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |