ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difopn GIF version

Theorem difopn 12291
Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
difopn ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem difopn
StepHypRef Expression
1 elssuni 3764 . . . . . 6 (𝐴𝐽𝐴 𝐽)
2 iscld.1 . . . . . 6 𝑋 = 𝐽
31, 2sseqtrrdi 3146 . . . . 5 (𝐴𝐽𝐴𝑋)
43adantr 274 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐴𝑋)
5 df-ss 3084 . . . 4 (𝐴𝑋 ↔ (𝐴𝑋) = 𝐴)
64, 5sylib 121 . . 3 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝑋) = 𝐴)
76difeq1d 3193 . 2 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝑋) ∖ 𝐵) = (𝐴𝐵))
8 indif2 3320 . . 3 (𝐴 ∩ (𝑋𝐵)) = ((𝐴𝑋) ∖ 𝐵)
9 cldrcl 12285 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
109adantl 275 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
11 simpl 108 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐴𝐽)
122cldopn 12290 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
1312adantl 275 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝑋𝐵) ∈ 𝐽)
14 inopn 12184 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽 ∧ (𝑋𝐵) ∈ 𝐽) → (𝐴 ∩ (𝑋𝐵)) ∈ 𝐽)
1510, 11, 13, 14syl3anc 1216 . . 3 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ (𝑋𝐵)) ∈ 𝐽)
168, 15eqeltrrid 2227 . 2 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝑋) ∖ 𝐵) ∈ 𝐽)
177, 16eqeltrrd 2217 1 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cdif 3068  cin 3070  wss 3071   cuni 3736  cfv 5123  Topctop 12178  Clsdccld 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-top 12179  df-cld 12278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator