ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr Unicode version

Theorem djuf1olemr 7027
Description: Lemma for djulf1or 7029 and djurf1or 7030. For a version of this lemma with  F defined on  A and no restriction in the conclusion, see djuf1olem 7026. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1  |-  X  e. 
_V
djuf1olemr.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djuf1olemr  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2  |-  X  e. 
_V
2 djuf1olemr.2 . . . 4  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
32reseq1i 4885 . . 3  |-  ( F  |`  A )  =  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )
4 ssv 3169 . . . 4  |-  A  C_  _V
5 resmpt 4937 . . . 4  |-  ( A 
C_  _V  ->  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. ) )
64, 5ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
73, 6eqtri 2191 . 2  |-  ( F  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
81, 7djuf1olem 7026 1  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   {csn 3581   <.cop 3584    |-> cmpt 4048    X. cxp 4607    |` cres 4611   -1-1-onto->wf1o 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-1st 6116  df-2nd 6117
This theorem is referenced by:  djulf1or  7029  djurf1or  7030
  Copyright terms: Public domain W3C validator