ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr Unicode version

Theorem djuf1olemr 7078
Description: Lemma for djulf1or 7080 and djurf1or 7081. For a version of this lemma with  F defined on  A and no restriction in the conclusion, see djuf1olem 7077. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1  |-  X  e. 
_V
djuf1olemr.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djuf1olemr  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2  |-  X  e. 
_V
2 djuf1olemr.2 . . . 4  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
32reseq1i 4918 . . 3  |-  ( F  |`  A )  =  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )
4 ssv 3192 . . . 4  |-  A  C_  _V
5 resmpt 4970 . . . 4  |-  ( A 
C_  _V  ->  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. ) )
64, 5ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
73, 6eqtri 2210 . 2  |-  ( F  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
81, 7djuf1olem 7077 1  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2160   _Vcvv 2752    C_ wss 3144   {csn 3607   <.cop 3610    |-> cmpt 4079    X. cxp 4639    |` cres 4643   -1-1-onto->wf1o 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-1st 6160  df-2nd 6161
This theorem is referenced by:  djulf1or  7080  djurf1or  7081
  Copyright terms: Public domain W3C validator