ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr Unicode version

Theorem djuf1olemr 7155
Description: Lemma for djulf1or 7157 and djurf1or 7158. For a version of this lemma with  F defined on  A and no restriction in the conclusion, see djuf1olem 7154. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1  |-  X  e. 
_V
djuf1olemr.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djuf1olemr  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2  |-  X  e. 
_V
2 djuf1olemr.2 . . . 4  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
32reseq1i 4954 . . 3  |-  ( F  |`  A )  =  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )
4 ssv 3214 . . . 4  |-  A  C_  _V
5 resmpt 5006 . . . 4  |-  ( A 
C_  _V  ->  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. ) )
64, 5ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
73, 6eqtri 2225 . 2  |-  ( F  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
81, 7djuf1olem 7154 1  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175   _Vcvv 2771    C_ wss 3165   {csn 3632   <.cop 3635    |-> cmpt 4104    X. cxp 4672    |` cres 4676   -1-1-onto->wf1o 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-2nd 6226
This theorem is referenced by:  djulf1or  7157  djurf1or  7158
  Copyright terms: Public domain W3C validator