ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr Unicode version

Theorem djuf1olemr 7217
Description: Lemma for djulf1or 7219 and djurf1or 7220. For a version of this lemma with  F defined on  A and no restriction in the conclusion, see djuf1olem 7216. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1  |-  X  e. 
_V
djuf1olemr.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djuf1olemr  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2  |-  X  e. 
_V
2 djuf1olemr.2 . . . 4  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
32reseq1i 5000 . . 3  |-  ( F  |`  A )  =  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )
4 ssv 3246 . . . 4  |-  A  C_  _V
5 resmpt 5052 . . . 4  |-  ( A 
C_  _V  ->  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. ) )
64, 5ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
73, 6eqtri 2250 . 2  |-  ( F  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
81, 7djuf1olem 7216 1  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   <.cop 3669    |-> cmpt 4144    X. cxp 4716    |` cres 4720   -1-1-onto->wf1o 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285
This theorem is referenced by:  djulf1or  7219  djurf1or  7220
  Copyright terms: Public domain W3C validator