ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr Unicode version

Theorem djuf1olemr 7053
Description: Lemma for djulf1or 7055 and djurf1or 7056. For a version of this lemma with  F defined on  A and no restriction in the conclusion, see djuf1olem 7052. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1  |-  X  e. 
_V
djuf1olemr.2  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
Assertion
Ref Expression
djuf1olemr  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Distinct variable groups:    x, X    x, A
Allowed substitution hint:    F( x)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2  |-  X  e. 
_V
2 djuf1olemr.2 . . . 4  |-  F  =  ( x  e.  _V  |->  <. X ,  x >. )
32reseq1i 4904 . . 3  |-  ( F  |`  A )  =  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )
4 ssv 3178 . . . 4  |-  A  C_  _V
5 resmpt 4956 . . . 4  |-  ( A 
C_  _V  ->  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. ) )
64, 5ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  <. X ,  x >. )  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
73, 6eqtri 2198 . 2  |-  ( F  |`  A )  =  ( x  e.  A  |->  <. X ,  x >. )
81, 7djuf1olem 7052 1  |-  ( F  |`  A ) : A -1-1-onto-> ( { X }  X.  A
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   _Vcvv 2738    C_ wss 3130   {csn 3593   <.cop 3596    |-> cmpt 4065    X. cxp 4625    |` cres 4629   -1-1-onto->wf1o 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1st 6141  df-2nd 6142
This theorem is referenced by:  djulf1or  7055  djurf1or  7056
  Copyright terms: Public domain W3C validator