ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulf1or Unicode version

Theorem djulf1or 6856
Description: The left injection function on all sets is one to one and onto. (Contributed by BJ and Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djulf1or  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )

Proof of Theorem djulf1or
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0ex 3995 . 2  |-  (/)  e.  _V
2 df-inl 6847 . 2  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
31, 2djuf1olemr 6854 1  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
Colors of variables: wff set class
Syntax hints:   (/)c0 3310   {csn 3474    X. cxp 4475    |` cres 4479   -1-1-onto->wf1o 5058  inlcinl 6845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-1st 5969  df-2nd 5970  df-inl 6847
This theorem is referenced by:  inlresf1  6861  djuinr  6863  djuunr  6866  eldju  6868  eninl  6897
  Copyright terms: Public domain W3C validator