Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuf1olemr | GIF version |
Description: Lemma for djulf1or 7021 and djurf1or 7022. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7018. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
djuf1olemr.1 | ⊢ 𝑋 ∈ V |
djuf1olemr.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) |
Ref | Expression |
---|---|
djuf1olemr | ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuf1olemr.1 | . 2 ⊢ 𝑋 ∈ V | |
2 | djuf1olemr.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) | |
3 | 2 | reseq1i 4880 | . . 3 ⊢ (𝐹 ↾ 𝐴) = ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) |
4 | ssv 3164 | . . . 4 ⊢ 𝐴 ⊆ V | |
5 | resmpt 4932 | . . . 4 ⊢ (𝐴 ⊆ V → ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
7 | 3, 6 | eqtri 2186 | . 2 ⊢ (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
8 | 1, 7 | djuf1olem 7018 | 1 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 {csn 3576 〈cop 3579 ↦ cmpt 4043 × cxp 4602 ↾ cres 4606 –1-1-onto→wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: djulf1or 7021 djurf1or 7022 |
Copyright terms: Public domain | W3C validator |