ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr GIF version

Theorem djuf1olemr 7019
Description: Lemma for djulf1or 7021 and djurf1or 7022. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7018. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1 𝑋 ∈ V
djuf1olemr.2 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djuf1olemr (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2 𝑋 ∈ V
2 djuf1olemr.2 . . . 4 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
32reseq1i 4880 . . 3 (𝐹𝐴) = ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴)
4 ssv 3164 . . . 4 𝐴 ⊆ V
5 resmpt 4932 . . . 4 (𝐴 ⊆ V → ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩))
64, 5ax-mp 5 . . 3 ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
73, 6eqtri 2186 . 2 (𝐹𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
81, 7djuf1olem 7018 1 (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116  {csn 3576  cop 3579  cmpt 4043   × cxp 4602  cres 4606  1-1-ontowf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  djulf1or  7021  djurf1or  7022
  Copyright terms: Public domain W3C validator