| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuf1olemr | GIF version | ||
| Description: Lemma for djulf1or 7219 and djurf1or 7220. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7216. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuf1olemr.1 | ⊢ 𝑋 ∈ V |
| djuf1olemr.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) |
| Ref | Expression |
|---|---|
| djuf1olemr | ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuf1olemr.1 | . 2 ⊢ 𝑋 ∈ V | |
| 2 | djuf1olemr.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) | |
| 3 | 2 | reseq1i 5000 | . . 3 ⊢ (𝐹 ↾ 𝐴) = ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) |
| 4 | ssv 3246 | . . . 4 ⊢ 𝐴 ⊆ V | |
| 5 | resmpt 5052 | . . . 4 ⊢ (𝐴 ⊆ V → ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
| 7 | 3, 6 | eqtri 2250 | . 2 ⊢ (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
| 8 | 1, 7 | djuf1olem 7216 | 1 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 {csn 3666 〈cop 3669 ↦ cmpt 4144 × cxp 4716 ↾ cres 4720 –1-1-onto→wf1o 5316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-2nd 6285 |
| This theorem is referenced by: djulf1or 7219 djurf1or 7220 |
| Copyright terms: Public domain | W3C validator |