![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djuf1olemr | GIF version |
Description: Lemma for djulf1or 6746 and djurf1or 6747. Remark: maybe a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion would be more usable. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
djuf1olemr.1 | ⊢ 𝑋 ∈ V |
djuf1olemr.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) |
Ref | Expression |
---|---|
djuf1olemr | ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuf1olemr.1 | . 2 ⊢ 𝑋 ∈ V | |
2 | djuf1olemr.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) | |
3 | 2 | reseq1i 4709 | . . 3 ⊢ (𝐹 ↾ 𝐴) = ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) |
4 | ssv 3046 | . . . 4 ⊢ 𝐴 ⊆ V | |
5 | resmpt 4760 | . . . 4 ⊢ (𝐴 ⊆ V → ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉)) | |
6 | 4, 5 | ax-mp 7 | . . 3 ⊢ ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
7 | 3, 6 | eqtri 2108 | . 2 ⊢ (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
8 | 1, 7 | djuf1olem 6743 | 1 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 Vcvv 2619 ⊆ wss 2999 {csn 3446 〈cop 3449 ↦ cmpt 3899 × cxp 4436 ↾ cres 4440 –1-1-onto→wf1o 5014 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-1st 5911 df-2nd 5912 |
This theorem is referenced by: djulf1or 6746 djurf1or 6747 |
Copyright terms: Public domain | W3C validator |