ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr GIF version

Theorem djuf1olemr 7113
Description: Lemma for djulf1or 7115 and djurf1or 7116. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7112. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1 𝑋 ∈ V
djuf1olemr.2 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djuf1olemr (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2 𝑋 ∈ V
2 djuf1olemr.2 . . . 4 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
32reseq1i 4938 . . 3 (𝐹𝐴) = ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴)
4 ssv 3201 . . . 4 𝐴 ⊆ V
5 resmpt 4990 . . . 4 (𝐴 ⊆ V → ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩))
64, 5ax-mp 5 . . 3 ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
73, 6eqtri 2214 . 2 (𝐹𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
81, 7djuf1olem 7112 1 (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153  {csn 3618  cop 3621  cmpt 4090   × cxp 4657  cres 4661  1-1-ontowf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by:  djulf1or  7115  djurf1or  7116
  Copyright terms: Public domain W3C validator