![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djuf1olemr | GIF version |
Description: Lemma for djulf1or 7057 and djurf1or 7058. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7054. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
djuf1olemr.1 | ⊢ 𝑋 ∈ V |
djuf1olemr.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) |
Ref | Expression |
---|---|
djuf1olemr | ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuf1olemr.1 | . 2 ⊢ 𝑋 ∈ V | |
2 | djuf1olemr.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) | |
3 | 2 | reseq1i 4905 | . . 3 ⊢ (𝐹 ↾ 𝐴) = ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) |
4 | ssv 3179 | . . . 4 ⊢ 𝐴 ⊆ V | |
5 | resmpt 4957 | . . . 4 ⊢ (𝐴 ⊆ V → ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ ⟨𝑋, 𝑥⟩)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ ⟨𝑋, 𝑥⟩) |
7 | 3, 6 | eqtri 2198 | . 2 ⊢ (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ ⟨𝑋, 𝑥⟩) |
8 | 1, 7 | djuf1olem 7054 | 1 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 {csn 3594 ⟨cop 3597 ↦ cmpt 4066 × cxp 4626 ↾ cres 4630 –1-1-onto→wf1o 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: djulf1or 7057 djurf1or 7058 |
Copyright terms: Public domain | W3C validator |