ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr GIF version

Theorem djuf1olemr 7055
Description: Lemma for djulf1or 7057 and djurf1or 7058. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7054. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1 𝑋 ∈ V
djuf1olemr.2 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djuf1olemr (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2 𝑋 ∈ V
2 djuf1olemr.2 . . . 4 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
32reseq1i 4905 . . 3 (𝐹𝐴) = ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴)
4 ssv 3179 . . . 4 𝐴 ⊆ V
5 resmpt 4957 . . . 4 (𝐴 ⊆ V → ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩))
64, 5ax-mp 5 . . 3 ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
73, 6eqtri 2198 . 2 (𝐹𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
81, 7djuf1olem 7054 1 (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  Vcvv 2739  wss 3131  {csn 3594  cop 3597  cmpt 4066   × cxp 4626  cres 4630  1-1-ontowf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144
This theorem is referenced by:  djulf1or  7057  djurf1or  7058
  Copyright terms: Public domain W3C validator