ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olemr GIF version

Theorem djuf1olemr 7171
Description: Lemma for djulf1or 7173 and djurf1or 7174. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7170. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olemr.1 𝑋 ∈ V
djuf1olemr.2 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djuf1olemr (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem djuf1olemr
StepHypRef Expression
1 djuf1olemr.1 . 2 𝑋 ∈ V
2 djuf1olemr.2 . . . 4 𝐹 = (𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩)
32reseq1i 4964 . . 3 (𝐹𝐴) = ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴)
4 ssv 3219 . . . 4 𝐴 ⊆ V
5 resmpt 5016 . . . 4 (𝐴 ⊆ V → ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩))
64, 5ax-mp 5 . . 3 ((𝑥 ∈ V ↦ ⟨𝑋, 𝑥⟩) ↾ 𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
73, 6eqtri 2227 . 2 (𝐹𝐴) = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
81, 7djuf1olem 7170 1 (𝐹𝐴):𝐴1-1-onto→({𝑋} × 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  {csn 3638  cop 3641  cmpt 4113   × cxp 4681  cres 4685  1-1-ontowf1o 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1st 6239  df-2nd 6240
This theorem is referenced by:  djulf1or  7173  djurf1or  7174
  Copyright terms: Public domain W3C validator