| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuf1olemr | GIF version | ||
| Description: Lemma for djulf1or 7173 and djurf1or 7174. For a version of this lemma with 𝐹 defined on 𝐴 and no restriction in the conclusion, see djuf1olem 7170. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuf1olemr.1 | ⊢ 𝑋 ∈ V |
| djuf1olemr.2 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) |
| Ref | Expression |
|---|---|
| djuf1olemr | ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuf1olemr.1 | . 2 ⊢ 𝑋 ∈ V | |
| 2 | djuf1olemr.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) | |
| 3 | 2 | reseq1i 4964 | . . 3 ⊢ (𝐹 ↾ 𝐴) = ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) |
| 4 | ssv 3219 | . . . 4 ⊢ 𝐴 ⊆ V | |
| 5 | resmpt 5016 | . . . 4 ⊢ (𝐴 ⊆ V → ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ 〈𝑋, 𝑥〉) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
| 7 | 3, 6 | eqtri 2227 | . 2 ⊢ (𝐹 ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
| 8 | 1, 7 | djuf1olem 7170 | 1 ⊢ (𝐹 ↾ 𝐴):𝐴–1-1-onto→({𝑋} × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 {csn 3638 〈cop 3641 ↦ cmpt 4113 × cxp 4681 ↾ cres 4685 –1-1-onto→wf1o 5279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1st 6239 df-2nd 6240 |
| This theorem is referenced by: djulf1or 7173 djurf1or 7174 |
| Copyright terms: Public domain | W3C validator |