ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domnnzr Unicode version

Theorem domnnzr 14242
Description: A domain is a nonzero ring. (Contributed by Mario Carneiro, 28-Mar-2015.)
Assertion
Ref Expression
domnnzr  |-  ( R  e. Domn  ->  R  e. NzRing )

Proof of Theorem domnnzr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2229 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
3 eqid 2229 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
41, 2, 3isdomn 14241 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  ( x  =  ( 0g `  R )  \/  y  =  ( 0g `  R ) ) ) ) )
54simplbi 274 1  |-  ( R  e. Domn  ->  R  e. NzRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5318  (class class class)co 6007   Basecbs 13040   .rcmulr 13119   0gc0g 13297  NzRingcnzr 14151  Domncdomn 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5960  df-ov 6010  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-0g 13299  df-domn 14231
This theorem is referenced by:  domnring  14243  znidomb  14630
  Copyright terms: Public domain W3C validator