| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isdomn | Unicode version | ||
| Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| isdomn.b |
|
| isdomn.t |
|
| isdomn.z |
|
| Ref | Expression |
|---|---|
| isdomn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12746 |
. . . . 5
| |
| 2 | vex 2766 |
. . . . 5
| |
| 3 | funfvex 5576 |
. . . . . 6
| |
| 4 | 3 | funfni 5359 |
. . . . 5
|
| 5 | 1, 2, 4 | mp2an 426 |
. . . 4
|
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | fveq2 5559 |
. . . 4
| |
| 8 | isdomn.b |
. . . 4
| |
| 9 | 7, 8 | eqtr4di 2247 |
. . 3
|
| 10 | fn0g 13028 |
. . . . . 6
| |
| 11 | funfvex 5576 |
. . . . . . 7
| |
| 12 | 11 | funfni 5359 |
. . . . . 6
|
| 13 | 10, 2, 12 | mp2an 426 |
. . . . 5
|
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | fveq2 5559 |
. . . . . 6
| |
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | isdomn.z |
. . . . 5
| |
| 18 | 16, 17 | eqtr4di 2247 |
. . . 4
|
| 19 | simplr 528 |
. . . . 5
| |
| 20 | fveq2 5559 |
. . . . . . . . . 10
| |
| 21 | isdomn.t |
. . . . . . . . . 10
| |
| 22 | 20, 21 | eqtr4di 2247 |
. . . . . . . . 9
|
| 23 | 22 | oveqdr 5951 |
. . . . . . . 8
|
| 24 | id 19 |
. . . . . . . 8
| |
| 25 | 23, 24 | eqeqan12d 2212 |
. . . . . . 7
|
| 26 | eqeq2 2206 |
. . . . . . . . 9
| |
| 27 | eqeq2 2206 |
. . . . . . . . 9
| |
| 28 | 26, 27 | orbi12d 794 |
. . . . . . . 8
|
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | 25, 29 | imbi12d 234 |
. . . . . 6
|
| 31 | 19, 30 | raleqbidv 2709 |
. . . . 5
|
| 32 | 19, 31 | raleqbidv 2709 |
. . . 4
|
| 33 | 14, 18, 32 | sbcied2 3027 |
. . 3
|
| 34 | 6, 9, 33 | sbcied2 3027 |
. 2
|
| 35 | df-domn 13825 |
. 2
| |
| 36 | 34, 35 | elrab2 2923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5878 df-ov 5926 df-inn 8993 df-ndx 12691 df-slot 12692 df-base 12694 df-0g 12939 df-domn 13825 |
| This theorem is referenced by: domnnzr 13836 domneq0 13838 opprdomnbg 13840 znidom 14223 |
| Copyright terms: Public domain | W3C validator |