| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isdomn | Unicode version | ||
| Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| isdomn.b |
|
| isdomn.t |
|
| isdomn.z |
|
| Ref | Expression |
|---|---|
| isdomn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 13077 |
. . . . 5
| |
| 2 | vex 2802 |
. . . . 5
| |
| 3 | funfvex 5640 |
. . . . . 6
| |
| 4 | 3 | funfni 5419 |
. . . . 5
|
| 5 | 1, 2, 4 | mp2an 426 |
. . . 4
|
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | fveq2 5623 |
. . . 4
| |
| 8 | isdomn.b |
. . . 4
| |
| 9 | 7, 8 | eqtr4di 2280 |
. . 3
|
| 10 | fn0g 13394 |
. . . . . 6
| |
| 11 | funfvex 5640 |
. . . . . . 7
| |
| 12 | 11 | funfni 5419 |
. . . . . 6
|
| 13 | 10, 2, 12 | mp2an 426 |
. . . . 5
|
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | fveq2 5623 |
. . . . . 6
| |
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | isdomn.z |
. . . . 5
| |
| 18 | 16, 17 | eqtr4di 2280 |
. . . 4
|
| 19 | simplr 528 |
. . . . 5
| |
| 20 | fveq2 5623 |
. . . . . . . . . 10
| |
| 21 | isdomn.t |
. . . . . . . . . 10
| |
| 22 | 20, 21 | eqtr4di 2280 |
. . . . . . . . 9
|
| 23 | 22 | oveqdr 6022 |
. . . . . . . 8
|
| 24 | id 19 |
. . . . . . . 8
| |
| 25 | 23, 24 | eqeqan12d 2245 |
. . . . . . 7
|
| 26 | eqeq2 2239 |
. . . . . . . . 9
| |
| 27 | eqeq2 2239 |
. . . . . . . . 9
| |
| 28 | 26, 27 | orbi12d 798 |
. . . . . . . 8
|
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | 25, 29 | imbi12d 234 |
. . . . . 6
|
| 31 | 19, 30 | raleqbidv 2744 |
. . . . 5
|
| 32 | 19, 31 | raleqbidv 2744 |
. . . 4
|
| 33 | 14, 18, 32 | sbcied2 3066 |
. . 3
|
| 34 | 6, 9, 33 | sbcied2 3066 |
. 2
|
| 35 | df-domn 14208 |
. 2
| |
| 36 | 34, 35 | elrab2 2962 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-riota 5947 df-ov 5997 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-0g 13277 df-domn 14208 |
| This theorem is referenced by: domnnzr 14219 domneq0 14221 opprdomnbg 14223 znidom 14606 |
| Copyright terms: Public domain | W3C validator |