ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isdomn Unicode version

Theorem isdomn 14218
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b  |-  B  =  ( Base `  R
)
isdomn.t  |-  .x.  =  ( .r `  R )
isdomn.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isdomn  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Distinct variable groups:    x, B, y   
x, R, y    x,  .0. , y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isdomn
Dummy variables  b  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13077 . . . . 5  |-  Base  Fn  _V
2 vex 2802 . . . . 5  |-  r  e. 
_V
3 funfvex 5640 . . . . . 6  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
43funfni 5419 . . . . 5  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
51, 2, 4mp2an 426 . . . 4  |-  ( Base `  r )  e.  _V
65a1i 9 . . 3  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
7 fveq2 5623 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
8 isdomn.b . . . 4  |-  B  =  ( Base `  R
)
97, 8eqtr4di 2280 . . 3  |-  ( r  =  R  ->  ( Base `  r )  =  B )
10 fn0g 13394 . . . . . 6  |-  0g  Fn  _V
11 funfvex 5640 . . . . . . 7  |-  ( ( Fun  0g  /\  r  e.  dom  0g )  -> 
( 0g `  r
)  e.  _V )
1211funfni 5419 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  r  e.  _V )  ->  ( 0g `  r
)  e.  _V )
1310, 2, 12mp2an 426 . . . . 5  |-  ( 0g
`  r )  e. 
_V
1413a1i 9 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  e.  _V )
15 fveq2 5623 . . . . . 6  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
1615adantr 276 . . . . 5  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  ( 0g
`  R ) )
17 isdomn.z . . . . 5  |-  .0.  =  ( 0g `  R )
1816, 17eqtr4di 2280 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  .0.  )
19 simplr 528 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  b  =  B )
20 fveq2 5623 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
21 isdomn.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
2220, 21eqtr4di 2280 . . . . . . . . 9  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
2322oveqdr 6022 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  ( x ( .r
`  r ) y )  =  ( x 
.x.  y ) )
24 id 19 . . . . . . . 8  |-  ( z  =  .0.  ->  z  =  .0.  )
2523, 24eqeqan12d 2245 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x ( .r
`  r ) y )  =  z  <->  ( x  .x.  y )  =  .0.  ) )
26 eqeq2 2239 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
x  =  z  <->  x  =  .0.  ) )
27 eqeq2 2239 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
y  =  z  <->  y  =  .0.  ) )
2826, 27orbi12d 798 . . . . . . . 8  |-  ( z  =  .0.  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
2928adantl 277 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
3025, 29imbi12d 234 . . . . . 6  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
3119, 30raleqbidv 2744 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
3219, 31raleqbidv 2744 . . . 4  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
3314, 18, 32sbcied2 3066 . . 3  |-  ( ( r  =  R  /\  b  =  B )  ->  ( [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) ) )
346, 9, 33sbcied2 3066 . 2  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
35 df-domn 14208 . 2  |- Domn  =  {
r  e. NzRing  |  [. ( Base `  r )  / 
b ]. [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
3634, 35elrab2 2962 1  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   [.wsbc 3028    Fn wfn 5309   ` cfv 5314  (class class class)co 5994   Basecbs 13018   .rcmulr 13097   0gc0g 13275  NzRingcnzr 14128  Domncdomn 14205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024  df-0g 13277  df-domn 14208
This theorem is referenced by:  domnnzr  14219  domneq0  14221  opprdomnbg  14223  znidom  14606
  Copyright terms: Public domain W3C validator