ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isdomn Unicode version

Theorem isdomn 14101
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b  |-  B  =  ( Base `  R
)
isdomn.t  |-  .x.  =  ( .r `  R )
isdomn.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isdomn  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Distinct variable groups:    x, B, y   
x, R, y    x,  .0. , y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isdomn
Dummy variables  b  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12960 . . . . 5  |-  Base  Fn  _V
2 vex 2776 . . . . 5  |-  r  e. 
_V
3 funfvex 5605 . . . . . 6  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
43funfni 5384 . . . . 5  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
51, 2, 4mp2an 426 . . . 4  |-  ( Base `  r )  e.  _V
65a1i 9 . . 3  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
7 fveq2 5588 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
8 isdomn.b . . . 4  |-  B  =  ( Base `  R
)
97, 8eqtr4di 2257 . . 3  |-  ( r  =  R  ->  ( Base `  r )  =  B )
10 fn0g 13277 . . . . . 6  |-  0g  Fn  _V
11 funfvex 5605 . . . . . . 7  |-  ( ( Fun  0g  /\  r  e.  dom  0g )  -> 
( 0g `  r
)  e.  _V )
1211funfni 5384 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  r  e.  _V )  ->  ( 0g `  r
)  e.  _V )
1310, 2, 12mp2an 426 . . . . 5  |-  ( 0g
`  r )  e. 
_V
1413a1i 9 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  e.  _V )
15 fveq2 5588 . . . . . 6  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
1615adantr 276 . . . . 5  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  ( 0g
`  R ) )
17 isdomn.z . . . . 5  |-  .0.  =  ( 0g `  R )
1816, 17eqtr4di 2257 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  .0.  )
19 simplr 528 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  b  =  B )
20 fveq2 5588 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
21 isdomn.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
2220, 21eqtr4di 2257 . . . . . . . . 9  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
2322oveqdr 5984 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  ( x ( .r
`  r ) y )  =  ( x 
.x.  y ) )
24 id 19 . . . . . . . 8  |-  ( z  =  .0.  ->  z  =  .0.  )
2523, 24eqeqan12d 2222 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x ( .r
`  r ) y )  =  z  <->  ( x  .x.  y )  =  .0.  ) )
26 eqeq2 2216 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
x  =  z  <->  x  =  .0.  ) )
27 eqeq2 2216 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
y  =  z  <->  y  =  .0.  ) )
2826, 27orbi12d 795 . . . . . . . 8  |-  ( z  =  .0.  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
2928adantl 277 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
3025, 29imbi12d 234 . . . . . 6  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
3119, 30raleqbidv 2719 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
3219, 31raleqbidv 2719 . . . 4  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
3314, 18, 32sbcied2 3040 . . 3  |-  ( ( r  =  R  /\  b  =  B )  ->  ( [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) ) )
346, 9, 33sbcied2 3040 . 2  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
35 df-domn 14091 . 2  |- Domn  =  {
r  e. NzRing  |  [. ( Base `  r )  / 
b ]. [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
3634, 35elrab2 2936 1  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773   [.wsbc 3002    Fn wfn 5274   ` cfv 5279  (class class class)co 5956   Basecbs 12902   .rcmulr 12980   0gc0g 13158  NzRingcnzr 14011  Domncdomn 14088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-riota 5911  df-ov 5959  df-inn 9052  df-ndx 12905  df-slot 12906  df-base 12908  df-0g 13160  df-domn 14091
This theorem is referenced by:  domnnzr  14102  domneq0  14104  opprdomnbg  14106  znidom  14489
  Copyright terms: Public domain W3C validator