| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isdomn | Unicode version | ||
| Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| isdomn.b |
|
| isdomn.t |
|
| isdomn.z |
|
| Ref | Expression |
|---|---|
| isdomn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basfn 12960 |
. . . . 5
| |
| 2 | vex 2776 |
. . . . 5
| |
| 3 | funfvex 5605 |
. . . . . 6
| |
| 4 | 3 | funfni 5384 |
. . . . 5
|
| 5 | 1, 2, 4 | mp2an 426 |
. . . 4
|
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | fveq2 5588 |
. . . 4
| |
| 8 | isdomn.b |
. . . 4
| |
| 9 | 7, 8 | eqtr4di 2257 |
. . 3
|
| 10 | fn0g 13277 |
. . . . . 6
| |
| 11 | funfvex 5605 |
. . . . . . 7
| |
| 12 | 11 | funfni 5384 |
. . . . . 6
|
| 13 | 10, 2, 12 | mp2an 426 |
. . . . 5
|
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | fveq2 5588 |
. . . . . 6
| |
| 16 | 15 | adantr 276 |
. . . . 5
|
| 17 | isdomn.z |
. . . . 5
| |
| 18 | 16, 17 | eqtr4di 2257 |
. . . 4
|
| 19 | simplr 528 |
. . . . 5
| |
| 20 | fveq2 5588 |
. . . . . . . . . 10
| |
| 21 | isdomn.t |
. . . . . . . . . 10
| |
| 22 | 20, 21 | eqtr4di 2257 |
. . . . . . . . 9
|
| 23 | 22 | oveqdr 5984 |
. . . . . . . 8
|
| 24 | id 19 |
. . . . . . . 8
| |
| 25 | 23, 24 | eqeqan12d 2222 |
. . . . . . 7
|
| 26 | eqeq2 2216 |
. . . . . . . . 9
| |
| 27 | eqeq2 2216 |
. . . . . . . . 9
| |
| 28 | 26, 27 | orbi12d 795 |
. . . . . . . 8
|
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | 25, 29 | imbi12d 234 |
. . . . . 6
|
| 31 | 19, 30 | raleqbidv 2719 |
. . . . 5
|
| 32 | 19, 31 | raleqbidv 2719 |
. . . 4
|
| 33 | 14, 18, 32 | sbcied2 3040 |
. . 3
|
| 34 | 6, 9, 33 | sbcied2 3040 |
. 2
|
| 35 | df-domn 14091 |
. 2
| |
| 36 | 34, 35 | elrab2 2936 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-cnex 8031 ax-resscn 8032 ax-1re 8034 ax-addrcl 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-iota 5240 df-fun 5281 df-fn 5282 df-fv 5287 df-riota 5911 df-ov 5959 df-inn 9052 df-ndx 12905 df-slot 12906 df-base 12908 df-0g 13160 df-domn 14091 |
| This theorem is referenced by: domnnzr 14102 domneq0 14104 opprdomnbg 14106 znidom 14489 |
| Copyright terms: Public domain | W3C validator |