ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmul1 Unicode version

Theorem dvdsmul1 11549
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )

Proof of Theorem dvdsmul1
StepHypRef Expression
1 zcn 9082 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 zcn 9082 . . 3  |-  ( M  e.  ZZ  ->  M  e.  CC )
3 mulcom 7772 . . 3  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( N  x.  M
)  =  ( M  x.  N ) )
41, 2, 3syl2anr 288 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  x.  M
)  =  ( M  x.  N ) )
5 zmulcl 9130 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
6 dvds0lem 11537 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  /\  ( N  x.  M )  =  ( M  x.  N ) )  ->  M  ||  ( M  x.  N )
)
76ex 114 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( N  x.  M
)  =  ( M  x.  N )  ->  M  ||  ( M  x.  N ) ) )
873com12 1186 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( N  x.  M
)  =  ( M  x.  N )  ->  M  ||  ( M  x.  N ) ) )
95, 8mpd3an3 1317 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  M )  =  ( M  x.  N )  ->  M  ||  ( M  x.  N )
) )
104, 9mpd 13 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3936  (class class class)co 5781   CCcc 7641    x. cmul 7648   ZZcz 9077    || cdvds 11527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-sub 7958  df-neg 7959  df-inn 8744  df-n0 9001  df-z 9078  df-dvds 11528
This theorem is referenced by:  dvdsmultr1  11565  3dvdsdec  11596  3dvds2dec  11597  2teven  11618  opoe  11626  omoe  11627  z4even  11647  ndvdsi  11664  mulgcd  11738  dvdsmulgcd  11747  lcmval  11778  lcmcllem  11782  lcmgcdlem  11792  qredeq  11811  cncongr2  11819  nprm  11838  exprmfct  11852  evenennn  11940
  Copyright terms: Public domain W3C validator