ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmul1 Unicode version

Theorem dvdsmul1 11775
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )

Proof of Theorem dvdsmul1
StepHypRef Expression
1 zcn 9217 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 zcn 9217 . . 3  |-  ( M  e.  ZZ  ->  M  e.  CC )
3 mulcom 7903 . . 3  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( N  x.  M
)  =  ( M  x.  N ) )
41, 2, 3syl2anr 288 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  x.  M
)  =  ( M  x.  N ) )
5 zmulcl 9265 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
6 dvds0lem 11763 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  /\  ( N  x.  M )  =  ( M  x.  N ) )  ->  M  ||  ( M  x.  N )
)
76ex 114 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( N  x.  M
)  =  ( M  x.  N )  ->  M  ||  ( M  x.  N ) ) )
873com12 1202 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( N  x.  M
)  =  ( M  x.  N )  ->  M  ||  ( M  x.  N ) ) )
95, 8mpd3an3 1333 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  M )  =  ( M  x.  N )  ->  M  ||  ( M  x.  N )
) )
104, 9mpd 13 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772    x. cmul 7779   ZZcz 9212    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-dvds 11750
This theorem is referenced by:  dvdsmultr1  11793  3dvdsdec  11824  3dvds2dec  11825  2teven  11846  opoe  11854  omoe  11855  z4even  11875  ndvdsi  11892  mulgcd  11971  dvdsmulgcd  11980  lcmval  12017  lcmcllem  12021  lcmgcdlem  12031  qredeq  12050  cncongr2  12058  nprm  12077  exprmfct  12092  prmdiv  12189  difsqpwdvds  12291  expnprm  12305  pockthlem  12308  evenennn  12348  lgsdir  13730  2sqlem4  13748
  Copyright terms: Public domain W3C validator