ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmul1 Unicode version

Theorem dvdsmul1 12324
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )

Proof of Theorem dvdsmul1
StepHypRef Expression
1 zcn 9451 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 zcn 9451 . . 3  |-  ( M  e.  ZZ  ->  M  e.  CC )
3 mulcom 8128 . . 3  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( N  x.  M
)  =  ( M  x.  N ) )
41, 2, 3syl2anr 290 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  x.  M
)  =  ( M  x.  N ) )
5 zmulcl 9500 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
6 dvds0lem 12312 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  /\  ( N  x.  M )  =  ( M  x.  N ) )  ->  M  ||  ( M  x.  N )
)
76ex 115 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( N  x.  M
)  =  ( M  x.  N )  ->  M  ||  ( M  x.  N ) ) )
873com12 1231 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( N  x.  M
)  =  ( M  x.  N )  ->  M  ||  ( M  x.  N ) ) )
95, 8mpd3an3 1372 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  M )  =  ( M  x.  N )  ->  M  ||  ( M  x.  N )
) )
104, 9mpd 13 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997    x. cmul 8004   ZZcz 9446    || cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-dvds 12299
This theorem is referenced by:  dvdsmultr1  12342  3dvdsdec  12376  3dvds2dec  12377  2teven  12398  opoe  12406  omoe  12407  z4even  12427  ndvdsi  12444  bits0e  12460  bits0o  12461  mulgcd  12537  dvdsmulgcd  12546  lcmval  12585  lcmcllem  12589  lcmgcdlem  12599  qredeq  12618  cncongr2  12626  nprm  12645  exprmfct  12660  prmdiv  12757  difsqpwdvds  12861  expnprm  12876  pockthlem  12879  4sqlem14  12927  evenennn  12964  znunit  14623  mpodvdsmulf1o  15664  perfectlem1  15673  lgsdir  15714  lgsquadlem1  15756  lgsquad2lem1  15760  lgsquad2lem2  15761  2lgsoddprmlem2  15785  2lgsoddprmlem3  15790  2sqlem4  15797
  Copyright terms: Public domain W3C validator