ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds0 Unicode version

Theorem dvds0 11815
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0  |-  ( N  e.  ZZ  ->  N  ||  0 )

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 9260 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
21mul02d 8351 . 2  |-  ( N  e.  ZZ  ->  (
0  x.  N )  =  0 )
3 0z 9266 . . 3  |-  0  e.  ZZ
4 dvds0lem 11810 . . . 4  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  e.  ZZ )  /\  ( 0  x.  N
)  =  0 )  ->  N  ||  0
)
54ex 115 . . 3  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  e.  ZZ )  ->  (
( 0  x.  N
)  =  0  ->  N  ||  0 ) )
63, 3, 5mp3an13 1328 . 2  |-  ( N  e.  ZZ  ->  (
( 0  x.  N
)  =  0  ->  N  ||  0 ) )
72, 6mpd 13 1  |-  ( N  e.  ZZ  ->  N  ||  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   0cc0 7813    x. cmul 7818   ZZcz 9255    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133  df-z 9256  df-dvds 11797
This theorem is referenced by:  0dvds  11820  alzdvds  11862  fzo0dvdseq  11865  z0even  11918  gcddvds  11966  gcd0id  11982  bezoutlemmain  12001  dfgcd3  12013  dfgcd2  12017  dvdssq  12034  dvdslcm  12071  lcmdvds  12081  mulgcddvds  12096  odzdvds  12247  pcdvdsb  12321  pcz  12333  lgsne0  14524
  Copyright terms: Public domain W3C validator