ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsnegb Unicode version

Theorem dvdsnegb 12314
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsnegb  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  -u N ) )

Proof of Theorem dvdsnegb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 znegcl 9473 . . . 4  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
32anim2i 342 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  -u N  e.  ZZ ) )
4 znegcl 9473 . . . 4  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
54adantl 277 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
6 zcn 9447 . . . . 5  |-  ( x  e.  ZZ  ->  x  e.  CC )
7 zcn 9447 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
8 mulneg1 8537 . . . . . 6  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( -u x  x.  M )  =  -u ( x  x.  M
) )
9 negeq 8335 . . . . . . 7  |-  ( ( x  x.  M )  =  N  ->  -u (
x  x.  M )  =  -u N )
109eqeq2d 2241 . . . . . 6  |-  ( ( x  x.  M )  =  N  ->  (
( -u x  x.  M
)  =  -u (
x  x.  M )  <-> 
( -u x  x.  M
)  =  -u N
) )
118, 10syl5ibcom 155 . . . . 5  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
126, 7, 11syl2anr 290 . . . 4  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
1312adantlr 477 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
141, 3, 5, 13dvds1lem 12308 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  M  ||  -u N
) )
15 zcn 9447 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
16 negeq 8335 . . . . . . . . . 10  |-  ( ( x  x.  M )  =  -u N  ->  -u (
x  x.  M )  =  -u -u N )
17 negneg 8392 . . . . . . . . . 10  |-  ( N  e.  CC  ->  -u -u N  =  N )
1816, 17sylan9eqr 2284 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  ( x  x.  M
)  =  -u N
)  ->  -u ( x  x.  M )  =  N )
198, 18sylan9eq 2282 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  ( N  e.  CC  /\  ( x  x.  M )  = 
-u N ) )  ->  ( -u x  x.  M )  =  N )
2019expr 375 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC )  ->  ( ( x  x.  M )  = 
-u N  ->  ( -u x  x.  M )  =  N ) )
21203impa 1218 . . . . . 6  |-  ( ( x  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
226, 7, 15, 21syl3an 1313 . . . . 5  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
23223coml 1234 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  x  e.  ZZ )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
24233expa 1227 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  = 
-u N  ->  ( -u x  x.  M )  =  N ) )
253, 1, 5, 24dvds1lem 12308 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  -u N  ->  M  ||  N ) )
2614, 25impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  -u N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993    x. cmul 8000   -ucneg 8314   ZZcz 9442    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-z 9443  df-dvds 12294
This theorem is referenced by:  dvdsabsb  12316  dvdssub  12344  dvdsadd2b  12346  3dvds  12370  bitscmp  12464  gcdneg  12498  bezoutlemaz  12519  bezoutlembz  12520  prmdiv  12752  pcneg  12843  znunit  14617
  Copyright terms: Public domain W3C validator