Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsnegb | Unicode version |
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsnegb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | znegcl 9177 | . . . 4 | |
3 | 2 | anim2i 340 | . . 3 |
4 | znegcl 9177 | . . . 4 | |
5 | 4 | adantl 275 | . . 3 |
6 | zcn 9151 | . . . . 5 | |
7 | zcn 9151 | . . . . 5 | |
8 | mulneg1 8249 | . . . . . 6 | |
9 | negeq 8047 | . . . . . . 7 | |
10 | 9 | eqeq2d 2166 | . . . . . 6 |
11 | 8, 10 | syl5ibcom 154 | . . . . 5 |
12 | 6, 7, 11 | syl2anr 288 | . . . 4 |
13 | 12 | adantlr 469 | . . 3 |
14 | 1, 3, 5, 13 | dvds1lem 11671 | . 2 |
15 | zcn 9151 | . . . . . 6 | |
16 | negeq 8047 | . . . . . . . . . 10 | |
17 | negneg 8104 | . . . . . . . . . 10 | |
18 | 16, 17 | sylan9eqr 2209 | . . . . . . . . 9 |
19 | 8, 18 | sylan9eq 2207 | . . . . . . . 8 |
20 | 19 | expr 373 | . . . . . . 7 |
21 | 20 | 3impa 1177 | . . . . . 6 |
22 | 6, 7, 15, 21 | syl3an 1259 | . . . . 5 |
23 | 22 | 3coml 1189 | . . . 4 |
24 | 23 | 3expa 1182 | . . 3 |
25 | 3, 1, 5, 24 | dvds1lem 11671 | . 2 |
26 | 14, 25 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 class class class wbr 3961 (class class class)co 5814 cc 7709 cmul 7716 cneg 8026 cz 9146 cdvds 11660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-z 9147 df-dvds 11661 |
This theorem is referenced by: dvdsabsb 11679 dvdssub 11705 dvdsadd2b 11707 gcdneg 11838 bezoutlemaz 11859 bezoutlembz 11860 |
Copyright terms: Public domain | W3C validator |