| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsnegb | Unicode version | ||
| Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsnegb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | znegcl 9402 |
. . . 4
| |
| 3 | 2 | anim2i 342 |
. . 3
|
| 4 | znegcl 9402 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | zcn 9376 |
. . . . 5
| |
| 7 | zcn 9376 |
. . . . 5
| |
| 8 | mulneg1 8466 |
. . . . . 6
| |
| 9 | negeq 8264 |
. . . . . . 7
| |
| 10 | 9 | eqeq2d 2216 |
. . . . . 6
|
| 11 | 8, 10 | syl5ibcom 155 |
. . . . 5
|
| 12 | 6, 7, 11 | syl2anr 290 |
. . . 4
|
| 13 | 12 | adantlr 477 |
. . 3
|
| 14 | 1, 3, 5, 13 | dvds1lem 12084 |
. 2
|
| 15 | zcn 9376 |
. . . . . 6
| |
| 16 | negeq 8264 |
. . . . . . . . . 10
| |
| 17 | negneg 8321 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | sylan9eqr 2259 |
. . . . . . . . 9
|
| 19 | 8, 18 | sylan9eq 2257 |
. . . . . . . 8
|
| 20 | 19 | expr 375 |
. . . . . . 7
|
| 21 | 20 | 3impa 1196 |
. . . . . 6
|
| 22 | 6, 7, 15, 21 | syl3an 1291 |
. . . . 5
|
| 23 | 22 | 3coml 1212 |
. . . 4
|
| 24 | 23 | 3expa 1205 |
. . 3
|
| 25 | 3, 1, 5, 24 | dvds1lem 12084 |
. 2
|
| 26 | 14, 25 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-z 9372 df-dvds 12070 |
| This theorem is referenced by: dvdsabsb 12092 dvdssub 12120 dvdsadd2b 12122 3dvds 12146 bitscmp 12240 gcdneg 12274 bezoutlemaz 12295 bezoutlembz 12296 prmdiv 12528 pcneg 12619 znunit 14392 |
| Copyright terms: Public domain | W3C validator |