ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsnegb Unicode version

Theorem dvdsnegb 12234
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsnegb  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  -u N ) )

Proof of Theorem dvdsnegb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 znegcl 9438 . . . 4  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
32anim2i 342 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  -u N  e.  ZZ ) )
4 znegcl 9438 . . . 4  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
54adantl 277 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
6 zcn 9412 . . . . 5  |-  ( x  e.  ZZ  ->  x  e.  CC )
7 zcn 9412 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
8 mulneg1 8502 . . . . . 6  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( -u x  x.  M )  =  -u ( x  x.  M
) )
9 negeq 8300 . . . . . . 7  |-  ( ( x  x.  M )  =  N  ->  -u (
x  x.  M )  =  -u N )
109eqeq2d 2219 . . . . . 6  |-  ( ( x  x.  M )  =  N  ->  (
( -u x  x.  M
)  =  -u (
x  x.  M )  <-> 
( -u x  x.  M
)  =  -u N
) )
118, 10syl5ibcom 155 . . . . 5  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
126, 7, 11syl2anr 290 . . . 4  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
1312adantlr 477 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( -u x  x.  M )  =  -u N ) )
141, 3, 5, 13dvds1lem 12228 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  M  ||  -u N
) )
15 zcn 9412 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
16 negeq 8300 . . . . . . . . . 10  |-  ( ( x  x.  M )  =  -u N  ->  -u (
x  x.  M )  =  -u -u N )
17 negneg 8357 . . . . . . . . . 10  |-  ( N  e.  CC  ->  -u -u N  =  N )
1816, 17sylan9eqr 2262 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  ( x  x.  M
)  =  -u N
)  ->  -u ( x  x.  M )  =  N )
198, 18sylan9eq 2260 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  ( N  e.  CC  /\  ( x  x.  M )  = 
-u N ) )  ->  ( -u x  x.  M )  =  N )
2019expr 375 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC )  ->  ( ( x  x.  M )  = 
-u N  ->  ( -u x  x.  M )  =  N ) )
21203impa 1197 . . . . . 6  |-  ( ( x  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
226, 7, 15, 21syl3an 1292 . . . . 5  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
23223coml 1213 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  x  e.  ZZ )  ->  (
( x  x.  M
)  =  -u N  ->  ( -u x  x.  M )  =  N ) )
24233expa 1206 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  = 
-u N  ->  ( -u x  x.  M )  =  N ) )
253, 1, 5, 24dvds1lem 12228 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  -u N  ->  M  ||  N ) )
2614, 25impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  M 
||  -u N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958    x. cmul 7965   -ucneg 8279   ZZcz 9407    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-z 9408  df-dvds 12214
This theorem is referenced by:  dvdsabsb  12236  dvdssub  12264  dvdsadd2b  12266  3dvds  12290  bitscmp  12384  gcdneg  12418  bezoutlemaz  12439  bezoutlembz  12440  prmdiv  12672  pcneg  12763  znunit  14536
  Copyright terms: Public domain W3C validator