Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsnegb | Unicode version |
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsnegb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | znegcl 9243 | . . . 4 | |
3 | 2 | anim2i 340 | . . 3 |
4 | znegcl 9243 | . . . 4 | |
5 | 4 | adantl 275 | . . 3 |
6 | zcn 9217 | . . . . 5 | |
7 | zcn 9217 | . . . . 5 | |
8 | mulneg1 8314 | . . . . . 6 | |
9 | negeq 8112 | . . . . . . 7 | |
10 | 9 | eqeq2d 2182 | . . . . . 6 |
11 | 8, 10 | syl5ibcom 154 | . . . . 5 |
12 | 6, 7, 11 | syl2anr 288 | . . . 4 |
13 | 12 | adantlr 474 | . . 3 |
14 | 1, 3, 5, 13 | dvds1lem 11764 | . 2 |
15 | zcn 9217 | . . . . . 6 | |
16 | negeq 8112 | . . . . . . . . . 10 | |
17 | negneg 8169 | . . . . . . . . . 10 | |
18 | 16, 17 | sylan9eqr 2225 | . . . . . . . . 9 |
19 | 8, 18 | sylan9eq 2223 | . . . . . . . 8 |
20 | 19 | expr 373 | . . . . . . 7 |
21 | 20 | 3impa 1189 | . . . . . 6 |
22 | 6, 7, 15, 21 | syl3an 1275 | . . . . 5 |
23 | 22 | 3coml 1205 | . . . 4 |
24 | 23 | 3expa 1198 | . . 3 |
25 | 3, 1, 5, 24 | dvds1lem 11764 | . 2 |
26 | 14, 25 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cmul 7779 cneg 8091 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-z 9213 df-dvds 11750 |
This theorem is referenced by: dvdsabsb 11772 dvdssub 11800 dvdsadd2b 11802 gcdneg 11937 bezoutlemaz 11958 bezoutlembz 11959 prmdiv 12189 pcneg 12278 |
Copyright terms: Public domain | W3C validator |