| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsnegb | Unicode version | ||
| Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsnegb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | znegcl 9438 |
. . . 4
| |
| 3 | 2 | anim2i 342 |
. . 3
|
| 4 | znegcl 9438 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | zcn 9412 |
. . . . 5
| |
| 7 | zcn 9412 |
. . . . 5
| |
| 8 | mulneg1 8502 |
. . . . . 6
| |
| 9 | negeq 8300 |
. . . . . . 7
| |
| 10 | 9 | eqeq2d 2219 |
. . . . . 6
|
| 11 | 8, 10 | syl5ibcom 155 |
. . . . 5
|
| 12 | 6, 7, 11 | syl2anr 290 |
. . . 4
|
| 13 | 12 | adantlr 477 |
. . 3
|
| 14 | 1, 3, 5, 13 | dvds1lem 12228 |
. 2
|
| 15 | zcn 9412 |
. . . . . 6
| |
| 16 | negeq 8300 |
. . . . . . . . . 10
| |
| 17 | negneg 8357 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | sylan9eqr 2262 |
. . . . . . . . 9
|
| 19 | 8, 18 | sylan9eq 2260 |
. . . . . . . 8
|
| 20 | 19 | expr 375 |
. . . . . . 7
|
| 21 | 20 | 3impa 1197 |
. . . . . 6
|
| 22 | 6, 7, 15, 21 | syl3an 1292 |
. . . . 5
|
| 23 | 22 | 3coml 1213 |
. . . 4
|
| 24 | 23 | 3expa 1206 |
. . 3
|
| 25 | 3, 1, 5, 24 | dvds1lem 12228 |
. 2
|
| 26 | 14, 25 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-z 9408 df-dvds 12214 |
| This theorem is referenced by: dvdsabsb 12236 dvdssub 12264 dvdsadd2b 12266 3dvds 12290 bitscmp 12384 gcdneg 12418 bezoutlemaz 12439 bezoutlembz 12440 prmdiv 12672 pcneg 12763 znunit 14536 |
| Copyright terms: Public domain | W3C validator |