ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomnqg Unicode version

Theorem mulcomnqg 7205
Description: Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
mulcomnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( B  .Q  A ) )

Proof of Theorem mulcomnqg
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7170 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 mulpipqqs 7195 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  )
3 mulpipqqs 7195 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
z  .N  x ) ,  ( w  .N  y ) >. ]  ~Q  )
4 mulcompig 7153 . . 3  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  =  ( z  .N  x ) )
54ad2ant2r 500 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( x  .N  z )  =  ( z  .N  x ) )
6 mulcompig 7153 . . 3  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( w  .N  y ) )
76ad2ant2l 499 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  =  ( w  .N  y ) )
81, 2, 3, 5, 7ecovicom 6537 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( B  .Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480  (class class class)co 5774   N.cnpi 7094    .N cmi 7096    ~Q ceq 7101   Q.cnq 7102    .Q cmq 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7126  df-mi 7128  df-mpq 7167  df-enq 7169  df-nqqs 7170  df-mqqs 7172
This theorem is referenced by:  recmulnqg  7213  recrecnq  7216  rec1nq  7217  lt2mulnq  7227  halfnqq  7232  prarloclemarch  7240  prarloclemarch2  7241  ltrnqg  7242  prarloclemlt  7315  addnqprllem  7349  addnqprulem  7350  addnqprl  7351  addnqpru  7352  appdivnq  7385  prmuloclemcalc  7387  mulnqprl  7390  mulnqpru  7391  mullocprlem  7392  mulclpr  7394  mulcomprg  7402  distrlem4prl  7406  distrlem4pru  7407  1idprl  7412  1idpru  7413  recexprlem1ssl  7455  recexprlem1ssu  7456  recexprlemss1l  7457  recexprlemss1u  7458
  Copyright terms: Public domain W3C validator