ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomnqg Unicode version

Theorem mulcomnqg 7452
Description: Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
mulcomnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( B  .Q  A ) )

Proof of Theorem mulcomnqg
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7417 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 mulpipqqs 7442 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  )
3 mulpipqqs 7442 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
z  .N  x ) ,  ( w  .N  y ) >. ]  ~Q  )
4 mulcompig 7400 . . 3  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  =  ( z  .N  x ) )
54ad2ant2r 509 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( x  .N  z )  =  ( z  .N  x ) )
6 mulcompig 7400 . . 3  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( w  .N  y ) )
76ad2ant2l 508 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  =  ( w  .N  y ) )
81, 2, 3, 5, 7ecovicom 6703 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( B  .Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5923   N.cnpi 7341    .N cmi 7343    ~Q ceq 7348   Q.cnq 7349    .Q cmq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-oadd 6479  df-omul 6480  df-er 6593  df-ec 6595  df-qs 6599  df-ni 7373  df-mi 7375  df-mpq 7414  df-enq 7416  df-nqqs 7417  df-mqqs 7419
This theorem is referenced by:  recmulnqg  7460  recrecnq  7463  rec1nq  7464  lt2mulnq  7474  halfnqq  7479  prarloclemarch  7487  prarloclemarch2  7488  ltrnqg  7489  prarloclemlt  7562  addnqprllem  7596  addnqprulem  7597  addnqprl  7598  addnqpru  7599  appdivnq  7632  prmuloclemcalc  7634  mulnqprl  7637  mulnqpru  7638  mullocprlem  7639  mulclpr  7641  mulcomprg  7649  distrlem4prl  7653  distrlem4pru  7654  1idprl  7659  1idpru  7660  recexprlem1ssl  7702  recexprlem1ssu  7703  recexprlemss1l  7704  recexprlemss1u  7705
  Copyright terms: Public domain W3C validator