| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcomnqg | Unicode version | ||
| Description: Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| Ref | Expression |
|---|---|
| mulcomnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7481 |
. 2
| |
| 2 | mulpipqqs 7506 |
. 2
| |
| 3 | mulpipqqs 7506 |
. 2
| |
| 4 | mulcompig 7464 |
. . 3
| |
| 5 | 4 | ad2ant2r 509 |
. 2
|
| 6 | mulcompig 7464 |
. . 3
| |
| 7 | 6 | ad2ant2l 508 |
. 2
|
| 8 | 1, 2, 3, 5, 7 | ecovicom 6743 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-mi 7439 df-mpq 7478 df-enq 7480 df-nqqs 7481 df-mqqs 7483 |
| This theorem is referenced by: recmulnqg 7524 recrecnq 7527 rec1nq 7528 lt2mulnq 7538 halfnqq 7543 prarloclemarch 7551 prarloclemarch2 7552 ltrnqg 7553 prarloclemlt 7626 addnqprllem 7660 addnqprulem 7661 addnqprl 7662 addnqpru 7663 appdivnq 7696 prmuloclemcalc 7698 mulnqprl 7701 mulnqpru 7702 mullocprlem 7703 mulclpr 7705 mulcomprg 7713 distrlem4prl 7717 distrlem4pru 7718 1idprl 7723 1idpru 7724 recexprlem1ssl 7766 recexprlem1ssu 7767 recexprlemss1l 7768 recexprlemss1u 7769 |
| Copyright terms: Public domain | W3C validator |