ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomnqg Unicode version

Theorem mulcomnqg 7357
Description: Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.)
Assertion
Ref Expression
mulcomnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( B  .Q  A ) )

Proof of Theorem mulcomnqg
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7322 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 mulpipqqs 7347 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( y  .N  w ) >. ]  ~Q  )
3 mulpipqqs 7347 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
z  .N  x ) ,  ( w  .N  y ) >. ]  ~Q  )
4 mulcompig 7305 . . 3  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  =  ( z  .N  x ) )
54ad2ant2r 509 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( x  .N  z )  =  ( z  .N  x ) )
6 mulcompig 7305 . . 3  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( w  .N  y ) )
76ad2ant2l 508 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( y  .N  w )  =  ( w  .N  y ) )
81, 2, 3, 5, 7ecovicom 6633 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( B  .Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146  (class class class)co 5865   N.cnpi 7246    .N cmi 7248    ~Q ceq 7253   Q.cnq 7254    .Q cmq 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-mi 7280  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-mqqs 7324
This theorem is referenced by:  recmulnqg  7365  recrecnq  7368  rec1nq  7369  lt2mulnq  7379  halfnqq  7384  prarloclemarch  7392  prarloclemarch2  7393  ltrnqg  7394  prarloclemlt  7467  addnqprllem  7501  addnqprulem  7502  addnqprl  7503  addnqpru  7504  appdivnq  7537  prmuloclemcalc  7539  mulnqprl  7542  mulnqpru  7543  mullocprlem  7544  mulclpr  7546  mulcomprg  7554  distrlem4prl  7558  distrlem4pru  7559  1idprl  7564  1idpru  7565  recexprlem1ssl  7607  recexprlem1ssu  7608  recexprlemss1l  7609  recexprlemss1u  7610
  Copyright terms: Public domain W3C validator