ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomsrg Unicode version

Theorem addcomsrg 7577
Description: Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
addcomsrg  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  =  ( B  +R  A ) )

Proof of Theorem addcomsrg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7549 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 addsrpr 7567 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  )
3 addsrpr 7567 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  +R  [ <. x ,  y >. ]  ~R  )  =  [ <. (
z  +P.  x ) ,  ( w  +P.  y ) >. ]  ~R  )
4 addcomprg 7400 . . 3  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  +P.  z
)  =  ( z  +P.  x ) )
54ad2ant2r 500 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  +P.  z )  =  ( z  +P.  x ) )
6 addcomprg 7400 . . 3  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  +P.  w
)  =  ( w  +P.  y ) )
76ad2ant2l 499 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  +P.  w )  =  ( w  +P.  y ) )
81, 2, 3, 5, 7ecovicom 6537 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  =  ( B  +R  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480  (class class class)co 5774   P.cnp 7113    +P. cpp 7115    ~R cer 7118   R.cnr 7119    +R cplr 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7126  df-pli 7127  df-mi 7128  df-lti 7129  df-plpq 7166  df-mpq 7167  df-enq 7169  df-nqqs 7170  df-plqqs 7171  df-mqqs 7172  df-1nqqs 7173  df-rq 7174  df-ltnqqs 7175  df-enq0 7246  df-nq0 7247  df-0nq0 7248  df-plq0 7249  df-mq0 7250  df-inp 7288  df-iplp 7290  df-enr 7548  df-nr 7549  df-plr 7550
This theorem is referenced by:  pn0sr  7593  caucvgsrlemoffval  7618  caucvgsrlemoffcau  7620  caucvgsrlemoffgt1  7621  caucvgsrlemoffres  7622  caucvgsr  7624  map2psrprg  7627  axaddcom  7692  axmulcom  7693  axmulass  7695  axdistr  7696  axi2m1  7697  axcnre  7703
  Copyright terms: Public domain W3C validator