![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecovicom | GIF version |
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.) |
Ref | Expression |
---|---|
ecovicom.1 | ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) |
ecovicom.2 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) |
ecovicom.3 | ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
ecovicom.4 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻) |
ecovicom.5 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) |
Ref | Expression |
---|---|
ecovicom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovicom.1 | . 2 ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) | |
2 | oveq1 5598 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = (𝐴 + [〈𝑧, 𝑤〉] ∼ )) | |
3 | oveq2 5599 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴)) | |
4 | 2, 3 | eqeq12d 2097 | . 2 ⊢ ([〈𝑥, 𝑦〉] ∼ = 𝐴 → (([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) ↔ (𝐴 + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴))) |
5 | oveq2 5599 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → (𝐴 + [〈𝑧, 𝑤〉] ∼ ) = (𝐴 + 𝐵)) | |
6 | oveq1 5598 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → ([〈𝑧, 𝑤〉] ∼ + 𝐴) = (𝐵 + 𝐴)) | |
7 | 5, 6 | eqeq12d 2097 | . 2 ⊢ ([〈𝑧, 𝑤〉] ∼ = 𝐵 → ((𝐴 + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
8 | ecovicom.4 | . . . 4 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻) | |
9 | ecovicom.5 | . . . 4 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) | |
10 | opeq12 3598 | . . . . 5 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → 〈𝐷, 𝐺〉 = 〈𝐻, 𝐽〉) | |
11 | 10 | eceq1d 6258 | . . . 4 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → [〈𝐷, 𝐺〉] ∼ = [〈𝐻, 𝐽〉] ∼ ) |
12 | 8, 9, 11 | syl2anc 403 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → [〈𝐷, 𝐺〉] ∼ = [〈𝐻, 𝐽〉] ∼ ) |
13 | ecovicom.2 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) | |
14 | ecovicom.3 | . . . 4 ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) | |
15 | 14 | ancoms 264 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) |
16 | 12, 13, 15 | 3eqtr4d 2125 | . 2 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ )) |
17 | 1, 4, 7, 16 | 2ecoptocl 6310 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 〈cop 3425 × cxp 4399 (class class class)co 5591 [cec 6220 / cqs 6221 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2614 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-xp 4407 df-cnv 4409 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fv 4977 df-ov 5594 df-ec 6224 df-qs 6228 |
This theorem is referenced by: addcomnqg 6843 mulcomnqg 6845 addcomsrg 7204 mulcomsrg 7206 axmulcom 7309 |
Copyright terms: Public domain | W3C validator |