![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecovicom | GIF version |
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.) |
Ref | Expression |
---|---|
ecovicom.1 | ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) |
ecovicom.2 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = [⟨𝐷, 𝐺⟩] ∼ ) |
ecovicom.3 | ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) |
ecovicom.4 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻) |
ecovicom.5 | ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) |
Ref | Expression |
---|---|
ecovicom | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovicom.1 | . 2 ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) | |
2 | oveq1 5882 | . . 3 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = (𝐴 + [⟨𝑧, 𝑤⟩] ∼ )) | |
3 | oveq2 5883 | . . 3 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴)) | |
4 | 2, 3 | eqeq12d 2192 | . 2 ⊢ ([⟨𝑥, 𝑦⟩] ∼ = 𝐴 → (([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) ↔ (𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴))) |
5 | oveq2 5883 | . . 3 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = (𝐴 + 𝐵)) | |
6 | oveq1 5882 | . . 3 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → ([⟨𝑧, 𝑤⟩] ∼ + 𝐴) = (𝐵 + 𝐴)) | |
7 | 5, 6 | eqeq12d 2192 | . 2 ⊢ ([⟨𝑧, 𝑤⟩] ∼ = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
8 | ecovicom.4 | . . . 4 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻) | |
9 | ecovicom.5 | . . . 4 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) | |
10 | opeq12 3781 | . . . . 5 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → ⟨𝐷, 𝐺⟩ = ⟨𝐻, 𝐽⟩) | |
11 | 10 | eceq1d 6571 | . . . 4 ⊢ ((𝐷 = 𝐻 ∧ 𝐺 = 𝐽) → [⟨𝐷, 𝐺⟩] ∼ = [⟨𝐻, 𝐽⟩] ∼ ) |
12 | 8, 9, 11 | syl2anc 411 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → [⟨𝐷, 𝐺⟩] ∼ = [⟨𝐻, 𝐽⟩] ∼ ) |
13 | ecovicom.2 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = [⟨𝐷, 𝐺⟩] ∼ ) | |
14 | ecovicom.3 | . . . 4 ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) | |
15 | 14 | ancoms 268 | . . 3 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ ) = [⟨𝐻, 𝐽⟩] ∼ ) |
16 | 12, 13, 15 | 3eqtr4d 2220 | . 2 ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([⟨𝑥, 𝑦⟩] ∼ + [⟨𝑧, 𝑤⟩] ∼ ) = ([⟨𝑧, 𝑤⟩] ∼ + [⟨𝑥, 𝑦⟩] ∼ )) |
17 | 1, 4, 7, 16 | 2ecoptocl 6623 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ⟨cop 3596 × cxp 4625 (class class class)co 5875 [cec 6533 / cqs 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-xp 4633 df-cnv 4635 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fv 5225 df-ov 5878 df-ec 6537 df-qs 6541 |
This theorem is referenced by: addcomnqg 7380 mulcomnqg 7382 addcomsrg 7754 mulcomsrg 7756 axmulcom 7870 |
Copyright terms: Public domain | W3C validator |