ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovicom GIF version

Theorem ecovicom 6743
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.)
Hypotheses
Ref Expression
ecovicom.1 𝐶 = ((𝑆 × 𝑆) / )
ecovicom.2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )
ecovicom.3 (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
ecovicom.4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐷 = 𝐻)
ecovicom.5 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐺 = 𝐽)
Assertion
Ref Expression
ecovicom ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑧,𝐵,𝑤   𝑥, + ,𝑦,𝑧,𝑤   𝑥, ,𝑦,𝑧,𝑤   𝑥,𝑆,𝑦,𝑧,𝑤   𝑧,𝐶,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem ecovicom
StepHypRef Expression
1 ecovicom.1 . 2 𝐶 = ((𝑆 × 𝑆) / )
2 oveq1 5964 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = (𝐴 + [⟨𝑧, 𝑤⟩] ))
3 oveq2 5965 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴))
42, 3eqeq12d 2221 . 2 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) ↔ (𝐴 + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴)))
5 oveq2 5965 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ) = (𝐴 + 𝐵))
6 oveq1 5964 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → ([⟨𝑧, 𝑤⟩] + 𝐴) = (𝐵 + 𝐴))
75, 6eqeq12d 2221 . 2 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
8 ecovicom.4 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐷 = 𝐻)
9 ecovicom.5 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐺 = 𝐽)
10 opeq12 3827 . . . . 5 ((𝐷 = 𝐻𝐺 = 𝐽) → ⟨𝐷, 𝐺⟩ = ⟨𝐻, 𝐽⟩)
1110eceq1d 6669 . . . 4 ((𝐷 = 𝐻𝐺 = 𝐽) → [⟨𝐷, 𝐺⟩] = [⟨𝐻, 𝐽⟩] )
128, 9, 11syl2anc 411 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → [⟨𝐷, 𝐺⟩] = [⟨𝐻, 𝐽⟩] )
13 ecovicom.2 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )
14 ecovicom.3 . . . 4 (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
1514ancoms 268 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
1612, 13, 153eqtr4d 2249 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ))
171, 4, 7, 162ecoptocl 6723 1 ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cop 3641   × cxp 4681  (class class class)co 5957  [cec 6631   / cqs 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fv 5288  df-ov 5960  df-ec 6635  df-qs 6639
This theorem is referenced by:  addcomnqg  7514  mulcomnqg  7516  addcomsrg  7888  mulcomsrg  7890  axmulcom  8004
  Copyright terms: Public domain W3C validator