ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovicom GIF version

Theorem ecovicom 6643
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.)
Hypotheses
Ref Expression
ecovicom.1 𝐶 = ((𝑆 × 𝑆) / )
ecovicom.2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )
ecovicom.3 (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
ecovicom.4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐷 = 𝐻)
ecovicom.5 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐺 = 𝐽)
Assertion
Ref Expression
ecovicom ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑧,𝐵,𝑤   𝑥, + ,𝑦,𝑧,𝑤   𝑥, ,𝑦,𝑧,𝑤   𝑥,𝑆,𝑦,𝑧,𝑤   𝑧,𝐶,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem ecovicom
StepHypRef Expression
1 ecovicom.1 . 2 𝐶 = ((𝑆 × 𝑆) / )
2 oveq1 5882 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = (𝐴 + [⟨𝑧, 𝑤⟩] ))
3 oveq2 5883 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴))
42, 3eqeq12d 2192 . 2 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) ↔ (𝐴 + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴)))
5 oveq2 5883 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ) = (𝐴 + 𝐵))
6 oveq1 5882 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → ([⟨𝑧, 𝑤⟩] + 𝐴) = (𝐵 + 𝐴))
75, 6eqeq12d 2192 . 2 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
8 ecovicom.4 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐷 = 𝐻)
9 ecovicom.5 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐺 = 𝐽)
10 opeq12 3781 . . . . 5 ((𝐷 = 𝐻𝐺 = 𝐽) → ⟨𝐷, 𝐺⟩ = ⟨𝐻, 𝐽⟩)
1110eceq1d 6571 . . . 4 ((𝐷 = 𝐻𝐺 = 𝐽) → [⟨𝐷, 𝐺⟩] = [⟨𝐻, 𝐽⟩] )
128, 9, 11syl2anc 411 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → [⟨𝐷, 𝐺⟩] = [⟨𝐻, 𝐽⟩] )
13 ecovicom.2 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )
14 ecovicom.3 . . . 4 (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
1514ancoms 268 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
1612, 13, 153eqtr4d 2220 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ))
171, 4, 7, 162ecoptocl 6623 1 ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cop 3596   × cxp 4625  (class class class)co 5875  [cec 6533   / cqs 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fv 5225  df-ov 5878  df-ec 6537  df-qs 6541
This theorem is referenced by:  addcomnqg  7380  mulcomnqg  7382  addcomsrg  7754  mulcomsrg  7756  axmulcom  7870
  Copyright terms: Public domain W3C validator