ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomsrg Unicode version

Theorem mulcomsrg 7301
Description: Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
mulcomsrg  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  =  ( B  .R  A ) )

Proof of Theorem mulcomsrg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7271 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 mulsrpr 7290 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
3 mulsrpr 7290 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. x ,  y >. ]  ~R  )  =  [ <. (
( z  .P.  x
)  +P.  ( w  .P.  y ) ) ,  ( ( z  .P.  y )  +P.  (
w  .P.  x )
) >. ]  ~R  )
4 mulcomprg 7137 . . . 4  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  =  ( z  .P.  x ) )
54ad2ant2r 493 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  .P.  z )  =  ( z  .P.  x ) )
6 mulcomprg 7137 . . . 4  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  =  ( w  .P.  y ) )
76ad2ant2l 492 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  .P.  w )  =  ( w  .P.  y ) )
85, 7oveq12d 5670 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( z  .P.  x
)  +P.  ( w  .P.  y ) ) )
9 mulcomprg 7137 . . . . 5  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  =  ( w  .P.  x ) )
109ad2ant2rl 495 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  .P.  w )  =  ( w  .P.  x ) )
11 mulcomprg 7137 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  =  ( z  .P.  y ) )
1211ad2ant2lr 494 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  .P.  z )  =  ( z  .P.  y ) )
1310, 12oveq12d 5670 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  =  ( ( w  .P.  x
)  +P.  ( z  .P.  y ) ) )
14 mulclpr 7129 . . . . . 6  |-  ( ( w  e.  P.  /\  x  e.  P. )  ->  ( w  .P.  x
)  e.  P. )
1514ancoms 264 . . . . 5  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( w  .P.  x
)  e.  P. )
1615ad2ant2rl 495 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( w  .P.  x )  e.  P. )
17 mulclpr 7129 . . . . . 6  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( z  .P.  y
)  e.  P. )
1817ancoms 264 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( z  .P.  y
)  e.  P. )
1918ad2ant2lr 494 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( z  .P.  y )  e.  P. )
20 addcomprg 7135 . . . 4  |-  ( ( ( w  .P.  x
)  e.  P.  /\  ( z  .P.  y
)  e.  P. )  ->  ( ( w  .P.  x )  +P.  (
z  .P.  y )
)  =  ( ( z  .P.  y )  +P.  ( w  .P.  x ) ) )
2116, 19, 20syl2anc 403 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
w  .P.  x )  +P.  ( z  .P.  y
) )  =  ( ( z  .P.  y
)  +P.  ( w  .P.  x ) ) )
2213, 21eqtrd 2120 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  =  ( ( z  .P.  y
)  +P.  ( w  .P.  x ) ) )
231, 2, 3, 8, 22ecovicom 6398 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  =  ( B  .R  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438  (class class class)co 5652   P.cnp 6848    +P. cpp 6850    .P. cmp 6851    ~R cer 6853   R.cnr 6854    .R cmr 6859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-pli 6862  df-mi 6863  df-lti 6864  df-plpq 6901  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-plqqs 6906  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910  df-enq0 6981  df-nq0 6982  df-0nq0 6983  df-plq0 6984  df-mq0 6985  df-inp 7023  df-iplp 7025  df-imp 7026  df-enr 7270  df-nr 7271  df-mr 7273
This theorem is referenced by:  mulresr  7373  axmulcom  7404  axmulass  7406  axcnre  7414
  Copyright terms: Public domain W3C validator