ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomsrg Unicode version

Theorem mulcomsrg 7940
Description: Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
Assertion
Ref Expression
mulcomsrg  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  =  ( B  .R  A ) )

Proof of Theorem mulcomsrg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7910 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 mulsrpr 7929 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
3 mulsrpr 7929 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. x ,  y >. ]  ~R  )  =  [ <. (
( z  .P.  x
)  +P.  ( w  .P.  y ) ) ,  ( ( z  .P.  y )  +P.  (
w  .P.  x )
) >. ]  ~R  )
4 mulcomprg 7763 . . . 4  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  =  ( z  .P.  x ) )
54ad2ant2r 509 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  .P.  z )  =  ( z  .P.  x ) )
6 mulcomprg 7763 . . . 4  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  =  ( w  .P.  y ) )
76ad2ant2l 508 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  .P.  w )  =  ( w  .P.  y ) )
85, 7oveq12d 6018 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( z  .P.  x
)  +P.  ( w  .P.  y ) ) )
9 mulcomprg 7763 . . . . 5  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  =  ( w  .P.  x ) )
109ad2ant2rl 511 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  .P.  w )  =  ( w  .P.  x ) )
11 mulcomprg 7763 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  =  ( z  .P.  y ) )
1211ad2ant2lr 510 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  .P.  z )  =  ( z  .P.  y ) )
1310, 12oveq12d 6018 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  =  ( ( w  .P.  x
)  +P.  ( z  .P.  y ) ) )
14 mulclpr 7755 . . . . . 6  |-  ( ( w  e.  P.  /\  x  e.  P. )  ->  ( w  .P.  x
)  e.  P. )
1514ancoms 268 . . . . 5  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( w  .P.  x
)  e.  P. )
1615ad2ant2rl 511 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( w  .P.  x )  e.  P. )
17 mulclpr 7755 . . . . . 6  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( z  .P.  y
)  e.  P. )
1817ancoms 268 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( z  .P.  y
)  e.  P. )
1918ad2ant2lr 510 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( z  .P.  y )  e.  P. )
20 addcomprg 7761 . . . 4  |-  ( ( ( w  .P.  x
)  e.  P.  /\  ( z  .P.  y
)  e.  P. )  ->  ( ( w  .P.  x )  +P.  (
z  .P.  y )
)  =  ( ( z  .P.  y )  +P.  ( w  .P.  x ) ) )
2116, 19, 20syl2anc 411 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
w  .P.  x )  +P.  ( z  .P.  y
) )  =  ( ( z  .P.  y
)  +P.  ( w  .P.  x ) ) )
2213, 21eqtrd 2262 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  =  ( ( z  .P.  y
)  +P.  ( w  .P.  x ) ) )
231, 2, 3, 8, 22ecovicom 6788 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  =  ( B  .R  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200  (class class class)co 6000   P.cnp 7474    +P. cpp 7476    .P. cmp 7477    ~R cer 7479   R.cnr 7480    .R cmr 7485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iplp 7651  df-imp 7652  df-enr 7909  df-nr 7910  df-mr 7912
This theorem is referenced by:  mulresr  8021  axmulcom  8054  axmulass  8056  axcnre  8064
  Copyright terms: Public domain W3C validator