ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecovidi GIF version

Theorem ecovidi 6625
Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.)
Hypotheses
Ref Expression
ecovidi.1 𝐷 = ((𝑆 × 𝑆) / )
ecovidi.2 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )
ecovidi.3 (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
ecovidi.4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )
ecovidi.5 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )
ecovidi.6 (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
ecovidi.7 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))
ecovidi.8 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))
ecovidi.9 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))
ecovidi.10 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐻 = 𝐾)
ecovidi.11 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐽 = 𝐿)
Assertion
Ref Expression
ecovidi ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑤,𝐶,𝑣,𝑢   𝑥, + ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, · ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝐷,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑊(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑋(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑌(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑍(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecovidi
StepHypRef Expression
1 ecovidi.1 . 2 𝐷 = ((𝑆 × 𝑆) / )
2 oveq1 5860 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )))
3 oveq1 5860 . . . 4 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = (𝐴 · [⟨𝑧, 𝑤⟩] ))
4 oveq1 5860 . . . 4 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = (𝐴 · [⟨𝑣, 𝑢⟩] ))
53, 4oveq12d 5871 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )))
62, 5eqeq12d 2185 . 2 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] ))))
7 oveq1 5860 . . . 4 ([⟨𝑧, 𝑤⟩] = 𝐵 → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = (𝐵 + [⟨𝑣, 𝑢⟩] ))
87oveq2d 5869 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )))
9 oveq2 5861 . . . 4 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 · [⟨𝑧, 𝑤⟩] ) = (𝐴 · 𝐵))
109oveq1d 5868 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )))
118, 10eqeq12d 2185 . 2 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · [⟨𝑧, 𝑤⟩] ) + (𝐴 · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] ))))
12 oveq2 5861 . . . 4 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐵 + [⟨𝑣, 𝑢⟩] ) = (𝐵 + 𝐶))
1312oveq2d 5869 . . 3 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = (𝐴 · (𝐵 + 𝐶)))
14 oveq2 5861 . . . 4 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐴 · [⟨𝑣, 𝑢⟩] ) = (𝐴 · 𝐶))
1514oveq2d 5869 . . 3 ([⟨𝑣, 𝑢⟩] = 𝐶 → ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1613, 15eqeq12d 2185 . 2 ([⟨𝑣, 𝑢⟩] = 𝐶 → ((𝐴 · (𝐵 + [⟨𝑣, 𝑢⟩] )) = ((𝐴 · 𝐵) + (𝐴 · [⟨𝑣, 𝑢⟩] )) ↔ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))))
17 ecovidi.10 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐻 = 𝐾)
18 ecovidi.11 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐽 = 𝐿)
19 opeq12 3767 . . . . 5 ((𝐻 = 𝐾𝐽 = 𝐿) → ⟨𝐻, 𝐽⟩ = ⟨𝐾, 𝐿⟩)
2019eceq1d 6549 . . . 4 ((𝐻 = 𝐾𝐽 = 𝐿) → [⟨𝐻, 𝐽⟩] = [⟨𝐾, 𝐿⟩] )
2117, 18, 20syl2anc 409 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → [⟨𝐻, 𝐽⟩] = [⟨𝐾, 𝐿⟩] )
22 ecovidi.2 . . . . . . 7 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )
2322oveq2d 5869 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ))
2423adantl 275 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ))
25 ecovidi.7 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))
26 ecovidi.3 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
2725, 26sylan2 284 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )
2824, 27eqtrd 2203 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = [⟨𝐻, 𝐽⟩] )
29283impb 1194 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = [⟨𝐻, 𝐽⟩] )
30 ecovidi.4 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )
31 ecovidi.5 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )
3230, 31oveqan12d 5872 . . . . 5 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ))
33 ecovidi.8 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))
34 ecovidi.9 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))
35 ecovidi.6 . . . . . 6 (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
3633, 34, 35syl2an 287 . . . . 5 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )
3732, 36eqtrd 2203 . . . 4 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆))) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = [⟨𝐾, 𝐿⟩] )
38373impdi 1288 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )) = [⟨𝐾, 𝐿⟩] )
3921, 29, 383eqtr4d 2213 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) + ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] )))
401, 6, 11, 16, 393ecoptocl 6602 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  cop 3586   × cxp 4609  (class class class)co 5853  [cec 6511   / cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fv 5206  df-ov 5856  df-ec 6515  df-qs 6519
This theorem is referenced by:  distrnqg  7349  distrsrg  7721  axdistr  7836
  Copyright terms: Public domain W3C validator