| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrsrg | Unicode version | ||
| Description: Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.) |
| Ref | Expression |
|---|---|
| distrsrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7914 |
. 2
| |
| 2 | addsrpr 7932 |
. 2
| |
| 3 | mulsrpr 7933 |
. 2
| |
| 4 | mulsrpr 7933 |
. 2
| |
| 5 | mulsrpr 7933 |
. 2
| |
| 6 | addsrpr 7932 |
. 2
| |
| 7 | addclpr 7724 |
. . . 4
| |
| 8 | 7 | ad2ant2r 509 |
. . 3
|
| 9 | addclpr 7724 |
. . . 4
| |
| 10 | 9 | ad2ant2l 508 |
. . 3
|
| 11 | 8, 10 | jca 306 |
. 2
|
| 12 | mulclpr 7759 |
. . . . 5
| |
| 13 | 12 | ad2ant2r 509 |
. . . 4
|
| 14 | mulclpr 7759 |
. . . . 5
| |
| 15 | 14 | ad2ant2l 508 |
. . . 4
|
| 16 | addclpr 7724 |
. . . 4
| |
| 17 | 13, 15, 16 | syl2anc 411 |
. . 3
|
| 18 | mulclpr 7759 |
. . . . 5
| |
| 19 | 18 | ad2ant2rl 511 |
. . . 4
|
| 20 | mulclpr 7759 |
. . . . 5
| |
| 21 | 20 | ad2ant2lr 510 |
. . . 4
|
| 22 | addclpr 7724 |
. . . 4
| |
| 23 | 19, 21, 22 | syl2anc 411 |
. . 3
|
| 24 | 17, 23 | jca 306 |
. 2
|
| 25 | mulclpr 7759 |
. . . . 5
| |
| 26 | 25 | ad2ant2r 509 |
. . . 4
|
| 27 | mulclpr 7759 |
. . . . 5
| |
| 28 | 27 | ad2ant2l 508 |
. . . 4
|
| 29 | addclpr 7724 |
. . . 4
| |
| 30 | 26, 28, 29 | syl2anc 411 |
. . 3
|
| 31 | mulclpr 7759 |
. . . . 5
| |
| 32 | 31 | ad2ant2rl 511 |
. . . 4
|
| 33 | mulclpr 7759 |
. . . . 5
| |
| 34 | 33 | ad2ant2lr 510 |
. . . 4
|
| 35 | addclpr 7724 |
. . . 4
| |
| 36 | 32, 34, 35 | syl2anc 411 |
. . 3
|
| 37 | 30, 36 | jca 306 |
. 2
|
| 38 | simp1l 1045 |
. . . . 5
| |
| 39 | simp2l 1047 |
. . . . 5
| |
| 40 | simp3l 1049 |
. . . . 5
| |
| 41 | distrprg 7775 |
. . . . 5
| |
| 42 | 38, 39, 40, 41 | syl3anc 1271 |
. . . 4
|
| 43 | simp1r 1046 |
. . . . 5
| |
| 44 | simp2r 1048 |
. . . . 5
| |
| 45 | simp3r 1050 |
. . . . 5
| |
| 46 | distrprg 7775 |
. . . . 5
| |
| 47 | 43, 44, 45, 46 | syl3anc 1271 |
. . . 4
|
| 48 | 42, 47 | oveq12d 6019 |
. . 3
|
| 49 | 38, 39, 12 | syl2anc 411 |
. . . 4
|
| 50 | 38, 40, 25 | syl2anc 411 |
. . . 4
|
| 51 | 43, 44, 14 | syl2anc 411 |
. . . 4
|
| 52 | addcomprg 7765 |
. . . . 5
| |
| 53 | 52 | adantl 277 |
. . . 4
|
| 54 | addassprg 7766 |
. . . . 5
| |
| 55 | 54 | adantl 277 |
. . . 4
|
| 56 | 43, 45, 27 | syl2anc 411 |
. . . 4
|
| 57 | addclpr 7724 |
. . . . 5
| |
| 58 | 57 | adantl 277 |
. . . 4
|
| 59 | 49, 50, 51, 53, 55, 56, 58 | caov4d 6190 |
. . 3
|
| 60 | 48, 59 | eqtrd 2262 |
. 2
|
| 61 | distrprg 7775 |
. . . . 5
| |
| 62 | 38, 44, 45, 61 | syl3anc 1271 |
. . . 4
|
| 63 | distrprg 7775 |
. . . . 5
| |
| 64 | 43, 39, 40, 63 | syl3anc 1271 |
. . . 4
|
| 65 | 62, 64 | oveq12d 6019 |
. . 3
|
| 66 | 38, 44, 18 | syl2anc 411 |
. . . 4
|
| 67 | 38, 45, 31 | syl2anc 411 |
. . . 4
|
| 68 | 43, 39, 20 | syl2anc 411 |
. . . 4
|
| 69 | 43, 40, 33 | syl2anc 411 |
. . . 4
|
| 70 | 66, 67, 68, 53, 55, 69, 58 | caov4d 6190 |
. . 3
|
| 71 | 65, 70 | eqtrd 2262 |
. 2
|
| 72 | 1, 2, 3, 4, 5, 6, 11, 24, 37, 60, 71 | ecovidi 6794 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-imp 7656 df-enr 7913 df-nr 7914 df-plr 7915 df-mr 7916 |
| This theorem is referenced by: pn0sr 7958 axmulass 8060 axdistr 8061 |
| Copyright terms: Public domain | W3C validator |