ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrsrg Unicode version

Theorem distrsrg 7789
Description: Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
Assertion
Ref Expression
distrsrg  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) ) )

Proof of Theorem distrsrg
Dummy variables  f  g  h  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7757 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 addsrpr 7775 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )
3 mulsrpr 7776 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( z  +P.  v )  e.  P.  /\  ( w  +P.  u
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. ( z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )  =  [ <. (
( x  .P.  (
z  +P.  v )
)  +P.  ( y  .P.  ( w  +P.  u
) ) ) ,  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v ) ) )
>. ]  ~R  )
4 mulsrpr 7776 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
5 mulsrpr 7776 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )
6 addsrpr 7775 . 2  |-  ( ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  /\  ( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P.  /\  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  +R  [ <. ( ( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )  =  [ <. ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  +P.  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) ) ,  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) ) >. ]  ~R  )
7 addclpr 7567 . . . 4  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  +P.  v
)  e.  P. )
87ad2ant2r 509 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( z  +P.  v )  e.  P. )
9 addclpr 7567 . . . 4  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  +P.  u
)  e.  P. )
109ad2ant2l 508 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  +P.  u )  e.  P. )
118, 10jca 306 . 2  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
12 mulclpr 7602 . . . . 5  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
1312ad2ant2r 509 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  .P.  z )  e.  P. )
14 mulclpr 7602 . . . . 5  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
1514ad2ant2l 508 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  .P.  w )  e.  P. )
16 addclpr 7567 . . . 4  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
1713, 15, 16syl2anc 411 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
18 mulclpr 7602 . . . . 5  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
1918ad2ant2rl 511 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  .P.  w )  e.  P. )
20 mulclpr 7602 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
2120ad2ant2lr 510 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  .P.  z )  e.  P. )
22 addclpr 7567 . . . 4  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
2319, 21, 22syl2anc 411 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2417, 23jca 306 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
25 mulclpr 7602 . . . . 5  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
2625ad2ant2r 509 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  .P.  v )  e.  P. )
27 mulclpr 7602 . . . . 5  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
2827ad2ant2l 508 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  .P.  u )  e.  P. )
29 addclpr 7567 . . . 4  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
3026, 28, 29syl2anc 411 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
31 mulclpr 7602 . . . . 5  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
3231ad2ant2rl 511 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  .P.  u )  e.  P. )
33 mulclpr 7602 . . . . 5  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
3433ad2ant2lr 510 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  .P.  v )  e.  P. )
35 addclpr 7567 . . . 4  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3632, 34, 35syl2anc 411 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3730, 36jca 306 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  .P.  v
)  +P.  ( y  .P.  u ) )  e. 
P.  /\  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. ) )
38 simp1l 1023 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  x  e.  P. )
39 simp2l 1025 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  z  e.  P. )
40 simp3l 1027 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  v  e.  P. )
41 distrprg 7618 . . . . 5  |-  ( ( x  e.  P.  /\  z  e.  P.  /\  v  e.  P. )  ->  (
x  .P.  ( z  +P.  v ) )  =  ( ( x  .P.  z )  +P.  (
x  .P.  v )
) )
4238, 39, 40, 41syl3anc 1249 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  .P.  ( z  +P.  v
) )  =  ( ( x  .P.  z
)  +P.  ( x  .P.  v ) ) )
43 simp1r 1024 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  y  e.  P. )
44 simp2r 1026 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  w  e.  P. )
45 simp3r 1028 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  u  e.  P. )
46 distrprg 7618 . . . . 5  |-  ( ( y  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
) )
4743, 44, 45, 46syl3anc 1249 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  .P.  ( w  +P.  u
) )  =  ( ( y  .P.  w
)  +P.  ( y  .P.  u ) ) )
4842, 47oveq12d 5915 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  (
w  +P.  u )
) )  =  ( ( ( x  .P.  z )  +P.  (
x  .P.  v )
)  +P.  ( (
y  .P.  w )  +P.  ( y  .P.  u
) ) ) )
4938, 39, 12syl2anc 411 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  .P.  z )  e.  P. )
5038, 40, 25syl2anc 411 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  .P.  v )  e.  P. )
5143, 44, 14syl2anc 411 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  .P.  w )  e.  P. )
52 addcomprg 7608 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
5352adantl 277 . . . 4  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
54 addassprg 7609 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
5554adantl 277 . . . 4  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
5643, 45, 27syl2anc 411 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  .P.  u )  e.  P. )
57 addclpr 7567 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
5857adantl 277 . . . 4  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  e.  P. )
5949, 50, 51, 53, 55, 56, 58caov4d 6082 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( x  .P.  v ) )  +P.  ( ( y  .P.  w )  +P.  (
y  .P.  u )
) )  =  ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  +P.  ( (
x  .P.  v )  +P.  ( y  .P.  u
) ) ) )
6048, 59eqtrd 2222 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  (
w  +P.  u )
) )  =  ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  +P.  ( (
x  .P.  v )  +P.  ( y  .P.  u
) ) ) )
61 distrprg 7618 . . . . 5  |-  ( ( x  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
x  .P.  ( w  +P.  u ) )  =  ( ( x  .P.  w )  +P.  (
x  .P.  u )
) )
6238, 44, 45, 61syl3anc 1249 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  .P.  ( w  +P.  u
) )  =  ( ( x  .P.  w
)  +P.  ( x  .P.  u ) ) )
63 distrprg 7618 . . . . 5  |-  ( ( y  e.  P.  /\  z  e.  P.  /\  v  e.  P. )  ->  (
y  .P.  ( z  +P.  v ) )  =  ( ( y  .P.  z )  +P.  (
y  .P.  v )
) )
6443, 39, 40, 63syl3anc 1249 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  .P.  ( z  +P.  v
) )  =  ( ( y  .P.  z
)  +P.  ( y  .P.  v ) ) )
6562, 64oveq12d 5915 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  (
z  +P.  v )
) )  =  ( ( ( x  .P.  w )  +P.  (
x  .P.  u )
)  +P.  ( (
y  .P.  z )  +P.  ( y  .P.  v
) ) ) )
6638, 44, 18syl2anc 411 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  .P.  w )  e.  P. )
6738, 45, 31syl2anc 411 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  .P.  u )  e.  P. )
6843, 39, 20syl2anc 411 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  .P.  z )  e.  P. )
6943, 40, 33syl2anc 411 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  .P.  v )  e.  P. )
7066, 67, 68, 53, 55, 69, 58caov4d 6082 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  .P.  w
)  +P.  ( x  .P.  u ) )  +P.  ( ( y  .P.  z )  +P.  (
y  .P.  v )
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) ) )
7165, 70eqtrd 2222 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  (
z  +P.  v )
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) ) )
721, 2, 3, 4, 5, 6, 11, 24, 37, 60, 71ecovidi 6674 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160  (class class class)co 5897   P.cnp 7321    +P. cpp 7323    .P. cmp 7324    ~R cer 7326   R.cnr 7327    +R cplr 7331    .R cmr 7332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-2o 6443  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-pli 7335  df-mi 7336  df-lti 7337  df-plpq 7374  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-plqqs 7379  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383  df-enq0 7454  df-nq0 7455  df-0nq0 7456  df-plq0 7457  df-mq0 7458  df-inp 7496  df-iplp 7498  df-imp 7499  df-enr 7756  df-nr 7757  df-plr 7758  df-mr 7759
This theorem is referenced by:  pn0sr  7801  axmulass  7903  axdistr  7904
  Copyright terms: Public domain W3C validator