ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf1ii Unicode version

Theorem elcncf1ii 14759
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1i.1  |-  F : A
--> B
elcncf1i.2  |-  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ )
elcncf1i.3  |-  ( ( ( x  e.  A  /\  w  e.  A
)  /\  y  e.  RR+ )  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
Assertion
Ref Expression
elcncf1ii  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) )
Distinct variable groups:    x, w, y, A    w, B, x, y    w, F, x, y    w, Z
Allowed substitution hints:    Z( x, y)

Proof of Theorem elcncf1ii
StepHypRef Expression
1 elcncf1i.1 . . . 4  |-  F : A
--> B
21a1i 9 . . 3  |-  ( T. 
->  F : A --> B )
3 elcncf1i.2 . . . 4  |-  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ )
43a1i 9 . . 3  |-  ( T. 
->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
5 elcncf1i.3 . . . 4  |-  ( ( ( x  e.  A  /\  w  e.  A
)  /\  y  e.  RR+ )  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
65a1i 9 . . 3  |-  ( T. 
->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
72, 4, 6elcncf1di 14758 . 2  |-  ( T. 
->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
87mptru 1373 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   T. wtru 1365    e. wcel 2164    C_ wss 3154   class class class wbr 4030   -->wf 5251   ` cfv 5255  (class class class)co 5919   CCcc 7872    < clt 8056    - cmin 8192   RR+crp 9722   abscabs 11144   -cn->ccncf 14749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706  df-cncf 14750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator