ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf1ii GIF version

Theorem elcncf1ii 14003
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1i.1 𝐹:𝐴𝐵
elcncf1i.2 ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)
elcncf1i.3 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
Assertion
Ref Expression
elcncf1ii ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑤,𝑍
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem elcncf1ii
StepHypRef Expression
1 elcncf1i.1 . . . 4 𝐹:𝐴𝐵
21a1i 9 . . 3 (⊤ → 𝐹:𝐴𝐵)
3 elcncf1i.2 . . . 4 ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)
43a1i 9 . . 3 (⊤ → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
5 elcncf1i.3 . . . 4 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
65a1i 9 . . 3 (⊤ → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
72, 4, 6elcncf1di 14002 . 2 (⊤ → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
87mptru 1362 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wtru 1354  wcel 2148  wss 3129   class class class wbr 4003  wf 5212  cfv 5216  (class class class)co 5874  cc 7808   < clt 7991  cmin 8127  +crp 9652  abscabs 11005  cnccncf 13993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-map 6649  df-cncf 13994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator