ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recclnq Unicode version

Theorem recclnq 7164
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
recclnq  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )

Proof of Theorem recclnq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 recexnq 7162 . 2  |-  ( A  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) )
2 recmulnqg 7163 . . . . . 6  |-  ( ( A  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  A )  =  y  <-> 
( A  .Q  y
)  =  1Q ) )
32biimpar 293 . . . . 5  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  =  y )
4 eleq1a 2187 . . . . . 6  |-  ( y  e.  Q.  ->  (
( *Q `  A
)  =  y  -> 
( *Q `  A
)  e.  Q. )
)
54ad2antlr 478 . . . . 5  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( ( *Q
`  A )  =  y  ->  ( *Q `  A )  e.  Q. ) )
63, 5mpd 13 . . . 4  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  e.  Q. )
76expl 373 . . 3  |-  ( A  e.  Q.  ->  (
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  e.  Q. ) )
87exlimdv 1773 . 2  |-  ( A  e.  Q.  ->  ( E. y ( y  e. 
Q.  /\  ( A  .Q  y )  =  1Q )  ->  ( *Q `  A )  e.  Q. ) )
91, 8mpd 13 1  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314   E.wex 1451    e. wcel 1463   ` cfv 5091  (class class class)co 5740   Q.cnq 7052   1Qc1q 7053    .Q cmq 7055   *Qcrq 7056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-1o 6279  df-oadd 6283  df-omul 6284  df-er 6395  df-ec 6397  df-qs 6401  df-ni 7076  df-mi 7078  df-mpq 7117  df-enq 7119  df-nqqs 7120  df-mqqs 7122  df-1nqqs 7123  df-rq 7124
This theorem is referenced by:  recidnq  7165  recrecnq  7166  rec1nq  7167  halfnqq  7182  prarloclemarch  7190  ltrnqg  7192  addnqprllem  7299  addnqprulem  7300  addnqprl  7301  addnqpru  7302  recnnpr  7320  appdivnq  7335  mulnqprl  7340  mulnqpru  7341  1idprl  7362  1idpru  7363  recexprlemm  7396  recexprlemloc  7403  recexprlem1ssl  7405  recexprlem1ssu  7406  archrecnq  7435  archrecpr  7436  caucvgprlemnkj  7438  caucvgprlemnbj  7439  caucvgprlemm  7440  caucvgprlemopl  7441  caucvgprlemlol  7442  caucvgprlemloc  7447  caucvgprlemladdfu  7449  caucvgprlemladdrl  7450  caucvgprprlemloccalc  7456  caucvgprprlemnkltj  7461  caucvgprprlemnkeqj  7462  caucvgprprlemnjltk  7463  caucvgprprlemml  7466  caucvgprprlemopl  7469  caucvgprprlemlol  7470  caucvgprprlemloc  7475  caucvgprprlemexb  7479  caucvgprprlem1  7481  caucvgprprlem2  7482  recidpipr  7628
  Copyright terms: Public domain W3C validator