ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recclnq Unicode version

Theorem recclnq 7391
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
recclnq  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )

Proof of Theorem recclnq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 recexnq 7389 . 2  |-  ( A  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) )
2 recmulnqg 7390 . . . . . 6  |-  ( ( A  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  A )  =  y  <-> 
( A  .Q  y
)  =  1Q ) )
32biimpar 297 . . . . 5  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  =  y )
4 eleq1a 2249 . . . . . 6  |-  ( y  e.  Q.  ->  (
( *Q `  A
)  =  y  -> 
( *Q `  A
)  e.  Q. )
)
54ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( ( *Q
`  A )  =  y  ->  ( *Q `  A )  e.  Q. ) )
63, 5mpd 13 . . . 4  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  e.  Q. )
76expl 378 . . 3  |-  ( A  e.  Q.  ->  (
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  e.  Q. ) )
87exlimdv 1819 . 2  |-  ( A  e.  Q.  ->  ( E. y ( y  e. 
Q.  /\  ( A  .Q  y )  =  1Q )  ->  ( *Q `  A )  e.  Q. ) )
91, 8mpd 13 1  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Q.cnq 7279   1Qc1q 7280    .Q cmq 7282   *Qcrq 7283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-mi 7305  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-mqqs 7349  df-1nqqs 7350  df-rq 7351
This theorem is referenced by:  recidnq  7392  recrecnq  7393  rec1nq  7394  halfnqq  7409  prarloclemarch  7417  ltrnqg  7419  addnqprllem  7526  addnqprulem  7527  addnqprl  7528  addnqpru  7529  recnnpr  7547  appdivnq  7562  mulnqprl  7567  mulnqpru  7568  1idprl  7589  1idpru  7590  recexprlemm  7623  recexprlemloc  7630  recexprlem1ssl  7632  recexprlem1ssu  7633  archrecnq  7662  archrecpr  7663  caucvgprlemnkj  7665  caucvgprlemnbj  7666  caucvgprlemm  7667  caucvgprlemopl  7668  caucvgprlemlol  7669  caucvgprlemloc  7674  caucvgprlemladdfu  7676  caucvgprlemladdrl  7677  caucvgprprlemloccalc  7683  caucvgprprlemnkltj  7688  caucvgprprlemnkeqj  7689  caucvgprprlemnjltk  7690  caucvgprprlemml  7693  caucvgprprlemopl  7696  caucvgprprlemlol  7697  caucvgprprlemloc  7702  caucvgprprlemexb  7706  caucvgprprlem1  7708  caucvgprprlem2  7709  recidpipr  7855
  Copyright terms: Public domain W3C validator