ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recclnq Unicode version

Theorem recclnq 7426
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
recclnq  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )

Proof of Theorem recclnq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 recexnq 7424 . 2  |-  ( A  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) )
2 recmulnqg 7425 . . . . . 6  |-  ( ( A  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  A )  =  y  <-> 
( A  .Q  y
)  =  1Q ) )
32biimpar 297 . . . . 5  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  =  y )
4 eleq1a 2261 . . . . . 6  |-  ( y  e.  Q.  ->  (
( *Q `  A
)  =  y  -> 
( *Q `  A
)  e.  Q. )
)
54ad2antlr 489 . . . . 5  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( ( *Q
`  A )  =  y  ->  ( *Q `  A )  e.  Q. ) )
63, 5mpd 13 . . . 4  |-  ( ( ( A  e.  Q.  /\  y  e.  Q. )  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  e.  Q. )
76expl 378 . . 3  |-  ( A  e.  Q.  ->  (
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q )  ->  ( *Q `  A )  e.  Q. ) )
87exlimdv 1830 . 2  |-  ( A  e.  Q.  ->  ( E. y ( y  e. 
Q.  /\  ( A  .Q  y )  =  1Q )  ->  ( *Q `  A )  e.  Q. ) )
91, 8mpd 13 1  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   ` cfv 5238  (class class class)co 5900   Q.cnq 7314   1Qc1q 7315    .Q cmq 7317   *Qcrq 7318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-iord 4387  df-on 4389  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-irdg 6399  df-1o 6445  df-oadd 6449  df-omul 6450  df-er 6563  df-ec 6565  df-qs 6569  df-ni 7338  df-mi 7340  df-mpq 7379  df-enq 7381  df-nqqs 7382  df-mqqs 7384  df-1nqqs 7385  df-rq 7386
This theorem is referenced by:  recidnq  7427  recrecnq  7428  rec1nq  7429  halfnqq  7444  prarloclemarch  7452  ltrnqg  7454  addnqprllem  7561  addnqprulem  7562  addnqprl  7563  addnqpru  7564  recnnpr  7582  appdivnq  7597  mulnqprl  7602  mulnqpru  7603  1idprl  7624  1idpru  7625  recexprlemm  7658  recexprlemloc  7665  recexprlem1ssl  7667  recexprlem1ssu  7668  archrecnq  7697  archrecpr  7698  caucvgprlemnkj  7700  caucvgprlemnbj  7701  caucvgprlemm  7702  caucvgprlemopl  7703  caucvgprlemlol  7704  caucvgprlemloc  7709  caucvgprlemladdfu  7711  caucvgprlemladdrl  7712  caucvgprprlemloccalc  7718  caucvgprprlemnkltj  7723  caucvgprprlemnkeqj  7724  caucvgprprlemnjltk  7725  caucvgprprlemml  7728  caucvgprprlemopl  7731  caucvgprprlemlol  7732  caucvgprprlemloc  7737  caucvgprprlemexb  7741  caucvgprprlem1  7743  caucvgprprlem2  7744  recidpipr  7890
  Copyright terms: Public domain W3C validator