ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnneiid Unicode version

Theorem opnneiid 12804
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
opnneiid  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  N )  <->  N  e.  J ) )

Proof of Theorem opnneiid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 neii2 12789 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  N ) )  ->  E. x  e.  J  ( N  C_  x  /\  x  C_  N ) )
2 eqss 3157 . . . . . 6  |-  ( N  =  x  <->  ( N  C_  x  /\  x  C_  N ) )
3 eleq1a 2238 . . . . . 6  |-  ( x  e.  J  ->  ( N  =  x  ->  N  e.  J ) )
42, 3syl5bir 152 . . . . 5  |-  ( x  e.  J  ->  (
( N  C_  x  /\  x  C_  N )  ->  N  e.  J
) )
54rexlimiv 2577 . . . 4  |-  ( E. x  e.  J  ( N  C_  x  /\  x  C_  N )  ->  N  e.  J )
61, 5syl 14 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  N ) )  ->  N  e.  J )
76ex 114 . 2  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  N )  ->  N  e.  J ) )
8 ssid 3162 . . 3  |-  N  C_  N
9 opnneiss 12798 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  J  /\  N  C_  N )  ->  N  e.  ( ( nei `  J ) `  N ) )
1093exp 1192 . . 3  |-  ( J  e.  Top  ->  ( N  e.  J  ->  ( N  C_  N  ->  N  e.  ( ( nei `  J ) `  N
) ) ) )
118, 10mpii 44 . 2  |-  ( J  e.  Top  ->  ( N  e.  J  ->  N  e.  ( ( nei `  J ) `  N
) ) )
127, 11impbid 128 1  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  N )  <->  N  e.  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   ` cfv 5188   Topctop 12635   neicnei 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-nei 12779
This theorem is referenced by:  0nei  12806
  Copyright terms: Public domain W3C validator