| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcl | Unicode version | ||
| Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| renegcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rnegex 8005 |
. 2
| |
| 2 | recn 8029 |
. . . . 5
| |
| 3 | df-neg 8217 |
. . . . . . 7
| |
| 4 | 3 | eqeq1i 2204 |
. . . . . 6
|
| 5 | recn 8029 |
. . . . . . 7
| |
| 6 | 0cn 8035 |
. . . . . . . 8
| |
| 7 | subadd 8246 |
. . . . . . . 8
| |
| 8 | 6, 7 | mp3an1 1335 |
. . . . . . 7
|
| 9 | 5, 8 | sylan 283 |
. . . . . 6
|
| 10 | 4, 9 | bitrid 192 |
. . . . 5
|
| 11 | 2, 10 | sylan2 286 |
. . . 4
|
| 12 | eleq1a 2268 |
. . . . 5
| |
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | 11, 13 | sylbird 170 |
. . 3
|
| 15 | 14 | rexlimdva 2614 |
. 2
|
| 16 | 1, 15 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 |
| This theorem is referenced by: renegcli 8305 resubcl 8307 negreb 8308 renegcld 8423 negf1o 8425 ltnegcon1 8507 ltnegcon2 8508 lenegcon1 8510 lenegcon2 8511 mullt0 8524 recexre 8622 elnnz 9353 btwnz 9462 supinfneg 9686 infsupneg 9687 supminfex 9688 ublbneg 9704 negm 9706 rpnegap 9778 negelrp 9779 xnegcl 9924 xnegneg 9925 xltnegi 9927 rexsub 9945 xnegid 9951 xnegdi 9960 xpncan 9963 xnpcan 9964 xposdif 9974 iooneg 10080 iccneg 10081 icoshftf1o 10083 infssuzex 10340 crim 11040 absnid 11255 absdiflt 11274 absdifle 11275 dfabsmax 11399 max0addsup 11401 negfi 11410 minmax 11412 mincl 11413 min1inf 11414 min2inf 11415 minabs 11418 minclpr 11419 mingeb 11424 xrminrecl 11455 xrminrpcl 11456 |
| Copyright terms: Public domain | W3C validator |