Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renegcl | Unicode version |
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
renegcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 7824 | . 2 | |
2 | recn 7848 | . . . . 5 | |
3 | df-neg 8032 | . . . . . . 7 | |
4 | 3 | eqeq1i 2165 | . . . . . 6 |
5 | recn 7848 | . . . . . . 7 | |
6 | 0cn 7853 | . . . . . . . 8 | |
7 | subadd 8061 | . . . . . . . 8 | |
8 | 6, 7 | mp3an1 1306 | . . . . . . 7 |
9 | 5, 8 | sylan 281 | . . . . . 6 |
10 | 4, 9 | syl5bb 191 | . . . . 5 |
11 | 2, 10 | sylan2 284 | . . . 4 |
12 | eleq1a 2229 | . . . . 5 | |
13 | 12 | adantl 275 | . . . 4 |
14 | 11, 13 | sylbird 169 | . . 3 |
15 | 14 | rexlimdva 2574 | . 2 |
16 | 1, 15 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wrex 2436 (class class class)co 5818 cc 7713 cr 7714 cc0 7715 caddc 7718 cmin 8029 cneg 8030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-resscn 7807 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 df-neg 8032 |
This theorem is referenced by: renegcli 8120 resubcl 8122 negreb 8123 renegcld 8238 negf1o 8240 ltnegcon1 8321 ltnegcon2 8322 lenegcon1 8324 lenegcon2 8325 mullt0 8338 recexre 8436 elnnz 9160 btwnz 9266 supinfneg 9489 infsupneg 9490 supminfex 9491 ublbneg 9504 negm 9506 rpnegap 9575 negelrp 9576 xnegcl 9718 xnegneg 9719 xltnegi 9721 rexsub 9739 xnegid 9745 xnegdi 9754 xpncan 9757 xnpcan 9758 xposdif 9768 iooneg 9874 iccneg 9875 icoshftf1o 9877 crim 10740 absnid 10955 absdiflt 10974 absdifle 10975 dfabsmax 11099 max0addsup 11101 negfi 11109 minmax 11111 mincl 11112 min1inf 11113 min2inf 11114 minabs 11117 minclpr 11118 xrminrecl 11152 xrminrpcl 11153 infssuzex 11817 |
Copyright terms: Public domain | W3C validator |