ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcl Unicode version

Theorem renegcl 8335
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
Assertion
Ref Expression
renegcl  |-  ( A  e.  RR  ->  -u A  e.  RR )

Proof of Theorem renegcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 8036 . 2  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
2 recn 8060 . . . . 5  |-  ( x  e.  RR  ->  x  e.  CC )
3 df-neg 8248 . . . . . . 7  |-  -u A  =  ( 0  -  A )
43eqeq1i 2213 . . . . . 6  |-  ( -u A  =  x  <->  ( 0  -  A )  =  x )
5 recn 8060 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
6 0cn 8066 . . . . . . . 8  |-  0  e.  CC
7 subadd 8277 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  A  e.  CC  /\  x  e.  CC )  ->  (
( 0  -  A
)  =  x  <->  ( A  +  x )  =  0 ) )
86, 7mp3an1 1337 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( 0  -  A )  =  x  <-> 
( A  +  x
)  =  0 ) )
95, 8sylan 283 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  CC )  ->  ( ( 0  -  A )  =  x  <-> 
( A  +  x
)  =  0 ) )
104, 9bitrid 192 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  CC )  ->  ( -u A  =  x  <->  ( A  +  x )  =  0 ) )
112, 10sylan2 286 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u A  =  x  <->  ( A  +  x )  =  0 ) )
12 eleq1a 2277 . . . . 5  |-  ( x  e.  RR  ->  ( -u A  =  x  ->  -u A  e.  RR ) )
1312adantl 277 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u A  =  x  ->  -u A  e.  RR ) )
1411, 13sylbird 170 . . 3  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A  +  x )  =  0  ->  -u A  e.  RR ) )
1514rexlimdva 2623 . 2  |-  ( A  e.  RR  ->  ( E. x  e.  RR  ( A  +  x
)  =  0  ->  -u A  e.  RR ) )
161, 15mpd 13 1  |-  ( A  e.  RR  ->  -u A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927    + caddc 7930    - cmin 8245   -ucneg 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-resscn 8019  ax-1cn 8020  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sub 8247  df-neg 8248
This theorem is referenced by:  renegcli  8336  resubcl  8338  negreb  8339  renegcld  8454  negf1o  8456  ltnegcon1  8538  ltnegcon2  8539  lenegcon1  8541  lenegcon2  8542  mullt0  8555  recexre  8653  elnnz  9384  btwnz  9494  supinfneg  9718  infsupneg  9719  supminfex  9720  ublbneg  9736  negm  9738  rpnegap  9810  negelrp  9811  xnegcl  9956  xnegneg  9957  xltnegi  9959  rexsub  9977  xnegid  9983  xnegdi  9992  xpncan  9995  xnpcan  9996  xposdif  10006  iooneg  10112  iccneg  10113  icoshftf1o  10115  infssuzex  10378  crim  11202  absnid  11417  absdiflt  11436  absdifle  11437  dfabsmax  11561  max0addsup  11563  negfi  11572  minmax  11574  mincl  11575  min1inf  11576  min2inf  11577  minabs  11580  minclpr  11581  mingeb  11586  xrminrecl  11617  xrminrpcl  11618
  Copyright terms: Public domain W3C validator