| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcl | Unicode version | ||
| Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| renegcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rnegex 8069 |
. 2
| |
| 2 | recn 8093 |
. . . . 5
| |
| 3 | df-neg 8281 |
. . . . . . 7
| |
| 4 | 3 | eqeq1i 2215 |
. . . . . 6
|
| 5 | recn 8093 |
. . . . . . 7
| |
| 6 | 0cn 8099 |
. . . . . . . 8
| |
| 7 | subadd 8310 |
. . . . . . . 8
| |
| 8 | 6, 7 | mp3an1 1337 |
. . . . . . 7
|
| 9 | 5, 8 | sylan 283 |
. . . . . 6
|
| 10 | 4, 9 | bitrid 192 |
. . . . 5
|
| 11 | 2, 10 | sylan2 286 |
. . . 4
|
| 12 | eleq1a 2279 |
. . . . 5
| |
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | 11, 13 | sylbird 170 |
. . 3
|
| 15 | 14 | rexlimdva 2625 |
. 2
|
| 16 | 1, 15 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: renegcli 8369 resubcl 8371 negreb 8372 renegcld 8487 negf1o 8489 ltnegcon1 8571 ltnegcon2 8572 lenegcon1 8574 lenegcon2 8575 mullt0 8588 recexre 8686 elnnz 9417 btwnz 9527 supinfneg 9751 infsupneg 9752 supminfex 9753 ublbneg 9769 negm 9771 rpnegap 9843 negelrp 9844 xnegcl 9989 xnegneg 9990 xltnegi 9992 rexsub 10010 xnegid 10016 xnegdi 10025 xpncan 10028 xnpcan 10029 xposdif 10039 iooneg 10145 iccneg 10146 icoshftf1o 10148 infssuzex 10413 crim 11284 absnid 11499 absdiflt 11518 absdifle 11519 dfabsmax 11643 max0addsup 11645 negfi 11654 minmax 11656 mincl 11657 min1inf 11658 min2inf 11659 minabs 11662 minclpr 11663 mingeb 11668 xrminrecl 11699 xrminrpcl 11700 |
| Copyright terms: Public domain | W3C validator |