| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcl | Unicode version | ||
| Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| renegcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rnegex 8034 |
. 2
| |
| 2 | recn 8058 |
. . . . 5
| |
| 3 | df-neg 8246 |
. . . . . . 7
| |
| 4 | 3 | eqeq1i 2213 |
. . . . . 6
|
| 5 | recn 8058 |
. . . . . . 7
| |
| 6 | 0cn 8064 |
. . . . . . . 8
| |
| 7 | subadd 8275 |
. . . . . . . 8
| |
| 8 | 6, 7 | mp3an1 1337 |
. . . . . . 7
|
| 9 | 5, 8 | sylan 283 |
. . . . . 6
|
| 10 | 4, 9 | bitrid 192 |
. . . . 5
|
| 11 | 2, 10 | sylan2 286 |
. . . 4
|
| 12 | eleq1a 2277 |
. . . . 5
| |
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | 11, 13 | sylbird 170 |
. . 3
|
| 15 | 14 | rexlimdva 2623 |
. 2
|
| 16 | 1, 15 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 |
| This theorem is referenced by: renegcli 8334 resubcl 8336 negreb 8337 renegcld 8452 negf1o 8454 ltnegcon1 8536 ltnegcon2 8537 lenegcon1 8539 lenegcon2 8540 mullt0 8553 recexre 8651 elnnz 9382 btwnz 9492 supinfneg 9716 infsupneg 9717 supminfex 9718 ublbneg 9734 negm 9736 rpnegap 9808 negelrp 9809 xnegcl 9954 xnegneg 9955 xltnegi 9957 rexsub 9975 xnegid 9981 xnegdi 9990 xpncan 9993 xnpcan 9994 xposdif 10004 iooneg 10110 iccneg 10111 icoshftf1o 10113 infssuzex 10376 crim 11169 absnid 11384 absdiflt 11403 absdifle 11404 dfabsmax 11528 max0addsup 11530 negfi 11539 minmax 11541 mincl 11542 min1inf 11543 min2inf 11544 minabs 11547 minclpr 11548 mingeb 11553 xrminrecl 11584 xrminrpcl 11585 |
| Copyright terms: Public domain | W3C validator |