ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcl Unicode version

Theorem renegcl 8407
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.)
Assertion
Ref Expression
renegcl  |-  ( A  e.  RR  ->  -u A  e.  RR )

Proof of Theorem renegcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 8108 . 2  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
2 recn 8132 . . . . 5  |-  ( x  e.  RR  ->  x  e.  CC )
3 df-neg 8320 . . . . . . 7  |-  -u A  =  ( 0  -  A )
43eqeq1i 2237 . . . . . 6  |-  ( -u A  =  x  <->  ( 0  -  A )  =  x )
5 recn 8132 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
6 0cn 8138 . . . . . . . 8  |-  0  e.  CC
7 subadd 8349 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  A  e.  CC  /\  x  e.  CC )  ->  (
( 0  -  A
)  =  x  <->  ( A  +  x )  =  0 ) )
86, 7mp3an1 1358 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( 0  -  A )  =  x  <-> 
( A  +  x
)  =  0 ) )
95, 8sylan 283 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  CC )  ->  ( ( 0  -  A )  =  x  <-> 
( A  +  x
)  =  0 ) )
104, 9bitrid 192 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  CC )  ->  ( -u A  =  x  <->  ( A  +  x )  =  0 ) )
112, 10sylan2 286 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u A  =  x  <->  ( A  +  x )  =  0 ) )
12 eleq1a 2301 . . . . 5  |-  ( x  e.  RR  ->  ( -u A  =  x  ->  -u A  e.  RR ) )
1312adantl 277 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( -u A  =  x  ->  -u A  e.  RR ) )
1411, 13sylbird 170 . . 3  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( A  +  x )  =  0  ->  -u A  e.  RR ) )
1514rexlimdva 2648 . 2  |-  ( A  e.  RR  ->  ( E. x  e.  RR  ( A  +  x
)  =  0  ->  -u A  e.  RR ) )
161, 15mpd 13 1  |-  ( A  e.  RR  ->  -u A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999    + caddc 8002    - cmin 8317   -ucneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-neg 8320
This theorem is referenced by:  renegcli  8408  resubcl  8410  negreb  8411  renegcld  8526  negf1o  8528  ltnegcon1  8610  ltnegcon2  8611  lenegcon1  8613  lenegcon2  8614  mullt0  8627  recexre  8725  elnnz  9456  btwnz  9566  supinfneg  9790  infsupneg  9791  supminfex  9792  ublbneg  9808  negm  9810  rpnegap  9882  negelrp  9883  xnegcl  10028  xnegneg  10029  xltnegi  10031  rexsub  10049  xnegid  10055  xnegdi  10064  xpncan  10067  xnpcan  10068  xposdif  10078  iooneg  10184  iccneg  10185  icoshftf1o  10187  infssuzex  10453  crim  11369  absnid  11584  absdiflt  11603  absdifle  11604  dfabsmax  11728  max0addsup  11730  negfi  11739  minmax  11741  mincl  11742  min1inf  11743  min2inf  11744  minabs  11747  minclpr  11748  mingeb  11753  xrminrecl  11784  xrminrpcl  11785
  Copyright terms: Public domain W3C validator