Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renegcl | Unicode version |
Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
Ref | Expression |
---|---|
renegcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 7883 | . 2 | |
2 | recn 7907 | . . . . 5 | |
3 | df-neg 8093 | . . . . . . 7 | |
4 | 3 | eqeq1i 2178 | . . . . . 6 |
5 | recn 7907 | . . . . . . 7 | |
6 | 0cn 7912 | . . . . . . . 8 | |
7 | subadd 8122 | . . . . . . . 8 | |
8 | 6, 7 | mp3an1 1319 | . . . . . . 7 |
9 | 5, 8 | sylan 281 | . . . . . 6 |
10 | 4, 9 | syl5bb 191 | . . . . 5 |
11 | 2, 10 | sylan2 284 | . . . 4 |
12 | eleq1a 2242 | . . . . 5 | |
13 | 12 | adantl 275 | . . . 4 |
14 | 11, 13 | sylbird 169 | . . 3 |
15 | 14 | rexlimdva 2587 | . 2 |
16 | 1, 15 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 caddc 7777 cmin 8090 cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 |
This theorem is referenced by: renegcli 8181 resubcl 8183 negreb 8184 renegcld 8299 negf1o 8301 ltnegcon1 8382 ltnegcon2 8383 lenegcon1 8385 lenegcon2 8386 mullt0 8399 recexre 8497 elnnz 9222 btwnz 9331 supinfneg 9554 infsupneg 9555 supminfex 9556 ublbneg 9572 negm 9574 rpnegap 9643 negelrp 9644 xnegcl 9789 xnegneg 9790 xltnegi 9792 rexsub 9810 xnegid 9816 xnegdi 9825 xpncan 9828 xnpcan 9829 xposdif 9839 iooneg 9945 iccneg 9946 icoshftf1o 9948 crim 10822 absnid 11037 absdiflt 11056 absdifle 11057 dfabsmax 11181 max0addsup 11183 negfi 11191 minmax 11193 mincl 11194 min1inf 11195 min2inf 11196 minabs 11199 minclpr 11200 mingeb 11205 xrminrecl 11236 xrminrpcl 11237 infssuzex 11904 |
Copyright terms: Public domain | W3C validator |