| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcl | Unicode version | ||
| Description: Closure law for negative of reals. (Contributed by NM, 20-Jan-1997.) |
| Ref | Expression |
|---|---|
| renegcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rnegex 8036 |
. 2
| |
| 2 | recn 8060 |
. . . . 5
| |
| 3 | df-neg 8248 |
. . . . . . 7
| |
| 4 | 3 | eqeq1i 2213 |
. . . . . 6
|
| 5 | recn 8060 |
. . . . . . 7
| |
| 6 | 0cn 8066 |
. . . . . . . 8
| |
| 7 | subadd 8277 |
. . . . . . . 8
| |
| 8 | 6, 7 | mp3an1 1337 |
. . . . . . 7
|
| 9 | 5, 8 | sylan 283 |
. . . . . 6
|
| 10 | 4, 9 | bitrid 192 |
. . . . 5
|
| 11 | 2, 10 | sylan2 286 |
. . . 4
|
| 12 | eleq1a 2277 |
. . . . 5
| |
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | 11, 13 | sylbird 170 |
. . 3
|
| 15 | 14 | rexlimdva 2623 |
. 2
|
| 16 | 1, 15 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 |
| This theorem is referenced by: renegcli 8336 resubcl 8338 negreb 8339 renegcld 8454 negf1o 8456 ltnegcon1 8538 ltnegcon2 8539 lenegcon1 8541 lenegcon2 8542 mullt0 8555 recexre 8653 elnnz 9384 btwnz 9494 supinfneg 9718 infsupneg 9719 supminfex 9720 ublbneg 9736 negm 9738 rpnegap 9810 negelrp 9811 xnegcl 9956 xnegneg 9957 xltnegi 9959 rexsub 9977 xnegid 9983 xnegdi 9992 xpncan 9995 xnpcan 9996 xposdif 10006 iooneg 10112 iccneg 10113 icoshftf1o 10115 infssuzex 10378 crim 11202 absnid 11417 absdiflt 11436 absdifle 11437 dfabsmax 11561 max0addsup 11563 negfi 11572 minmax 11574 mincl 11575 min1inf 11576 min2inf 11577 minabs 11580 minclpr 11581 mingeb 11586 xrminrecl 11617 xrminrpcl 11618 |
| Copyright terms: Public domain | W3C validator |