ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem4 Unicode version

Theorem 4sqlem4 12748
Description: Lemma for 4sq 12766. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem4  |-  ( A  e.  S  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
Distinct variable groups:    w, n, x, y, z    v, n, A, u    S, n, u, v    u, A
Allowed substitution hints:    A( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem4
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
214sqlem2 12745 . . 3  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
3 gzreim 12735 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  ZZ[_i] )
43adantr 276 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( a  +  ( _i  x.  b ) )  e.  ZZ[_i] )
5 gzreim 12735 . . . . . . . 8  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  ZZ[_i] )
65adantl 277 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( c  +  ( _i  x.  d ) )  e.  ZZ[_i] )
7 gzcn 12728 . . . . . . . . . . . 12  |-  ( ( a  +  ( _i  x.  b ) )  e.  ZZ[_i]  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
83, 7syl 14 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
98absvalsq2d 11527 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) ) )
10 zre 9378 . . . . . . . . . . . . 13  |-  ( a  e.  ZZ  ->  a  e.  RR )
11 zre 9378 . . . . . . . . . . . . 13  |-  ( b  e.  ZZ  ->  b  e.  RR )
12 crre 11201 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1310, 11, 12syl2an 289 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1413oveq1d 5961 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( a ^ 2 ) )
15 crim 11202 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1610, 11, 15syl2an 289 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1716oveq1d 5961 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( b ^ 2 ) )
1814, 17oveq12d 5964 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( Re
`  ( a  +  ( _i  x.  b
) ) ) ^
2 )  +  ( ( Im `  (
a  +  ( _i  x.  b ) ) ) ^ 2 ) )  =  ( ( a ^ 2 )  +  ( b ^
2 ) ) )
199, 18eqtrd 2238 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )
20 gzcn 12728 . . . . . . . . . . . 12  |-  ( ( c  +  ( _i  x.  d ) )  e.  ZZ[_i]  ->  ( c  +  ( _i  x.  d ) )  e.  CC )
215, 20syl 14 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  CC )
2221absvalsq2d 11527 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  +  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
23 zre 9378 . . . . . . . . . . . . 13  |-  ( c  e.  ZZ  ->  c  e.  RR )
24 zre 9378 . . . . . . . . . . . . 13  |-  ( d  e.  ZZ  ->  d  e.  RR )
25 crre 11201 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2623, 24, 25syl2an 289 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2726oveq1d 5961 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( c ^ 2 ) )
28 crim 11202 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
2923, 24, 28syl2an 289 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
3029oveq1d 5961 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( d ^ 2 ) )
3127, 30oveq12d 5964 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( ( Re
`  ( c  +  ( _i  x.  d
) ) ) ^
2 )  +  ( ( Im `  (
c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( c ^ 2 )  +  ( d ^
2 ) ) )
3222, 31eqtrd 2238 . . . . . . . . 9  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )
3319, 32oveqan12d 5965 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
3433eqcomd 2211 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
35 fveq2 5578 . . . . . . . . . . 11  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  ( abs `  u )  =  ( abs `  (
a  +  ( _i  x.  b ) ) ) )
3635oveq1d 5961 . . . . . . . . . 10  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( abs `  u
) ^ 2 )  =  ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) )
3736oveq1d 5961 . . . . . . . . 9  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
3837eqeq2d 2217 . . . . . . . 8  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
39 fveq2 5578 . . . . . . . . . . 11  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  ( abs `  v )  =  ( abs `  (
c  +  ( _i  x.  d ) ) ) )
4039oveq1d 5961 . . . . . . . . . 10  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( abs `  v
) ^ 2 )  =  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )
4140oveq2d 5962 . . . . . . . . 9  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
4241eqeq2d 2217 . . . . . . . 8  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) ) )
4338, 42rspc2ev 2892 . . . . . . 7  |-  ( ( ( a  +  ( _i  x.  b ) )  e.  ZZ[_i]  /\  (
c  +  ( _i  x.  d ) )  e.  ZZ[_i]  /\  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
444, 6, 34, 43syl3anc 1250 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
45 eqeq1 2212 . . . . . . 7  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
46452rexbidv 2531 . . . . . 6  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) ) )
4744, 46syl5ibrcom 157 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4847rexlimdvva 2631 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4948rexlimivv 2629 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
502, 49sylbi 121 . 2  |-  ( A  e.  S  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
5114sqlem4a 12747 . . . 4  |-  ( ( u  e.  ZZ[_i]  /\  v  e.  ZZ[_i]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S
)
52 eleq1a 2277 . . . 4  |-  ( ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S  ->  ( A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S ) )
5351, 52syl 14 . . 3  |-  ( ( u  e.  ZZ[_i]  /\  v  e.  ZZ[_i]
)  ->  ( A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) )  ->  A  e.  S ) )
5453rexlimivv 2629 . 2  |-  ( E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S )
5550, 54impbii 126 1  |-  ( A  e.  S  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   _ici 7929    + caddc 7930    x. cmul 7932   2c2 9089   ZZcz 9374   ^cexp 10685   Recre 11184   Imcim 11185   abscabs 11341   ZZ[_i]cgz 12725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-gz 12726
This theorem is referenced by:  mul4sq  12750
  Copyright terms: Public domain W3C validator