ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem4 Unicode version

Theorem 4sqlem4 12333
Description: Lemma for 4sq (not yet proved here) . We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem4  |-  ( A  e.  S  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
Distinct variable groups:    w, n, x, y, z    v, n, A, u    S, n, u, v    u, A
Allowed substitution hints:    A( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem4
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
214sqlem2 12330 . . 3  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
3 gzreim 12320 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  ZZ[_i] )
43adantr 274 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( a  +  ( _i  x.  b ) )  e.  ZZ[_i] )
5 gzreim 12320 . . . . . . . 8  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  ZZ[_i] )
65adantl 275 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( c  +  ( _i  x.  d ) )  e.  ZZ[_i] )
7 gzcn 12313 . . . . . . . . . . . 12  |-  ( ( a  +  ( _i  x.  b ) )  e.  ZZ[_i]  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
83, 7syl 14 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
98absvalsq2d 11136 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) ) )
10 zre 9205 . . . . . . . . . . . . 13  |-  ( a  e.  ZZ  ->  a  e.  RR )
11 zre 9205 . . . . . . . . . . . . 13  |-  ( b  e.  ZZ  ->  b  e.  RR )
12 crre 10810 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1310, 11, 12syl2an 287 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1413oveq1d 5866 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( a ^ 2 ) )
15 crim 10811 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1610, 11, 15syl2an 287 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1716oveq1d 5866 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( b ^ 2 ) )
1814, 17oveq12d 5869 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( Re
`  ( a  +  ( _i  x.  b
) ) ) ^
2 )  +  ( ( Im `  (
a  +  ( _i  x.  b ) ) ) ^ 2 ) )  =  ( ( a ^ 2 )  +  ( b ^
2 ) ) )
199, 18eqtrd 2203 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )
20 gzcn 12313 . . . . . . . . . . . 12  |-  ( ( c  +  ( _i  x.  d ) )  e.  ZZ[_i]  ->  ( c  +  ( _i  x.  d ) )  e.  CC )
215, 20syl 14 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  CC )
2221absvalsq2d 11136 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  +  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
23 zre 9205 . . . . . . . . . . . . 13  |-  ( c  e.  ZZ  ->  c  e.  RR )
24 zre 9205 . . . . . . . . . . . . 13  |-  ( d  e.  ZZ  ->  d  e.  RR )
25 crre 10810 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2623, 24, 25syl2an 287 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2726oveq1d 5866 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( c ^ 2 ) )
28 crim 10811 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
2923, 24, 28syl2an 287 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
3029oveq1d 5866 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( d ^ 2 ) )
3127, 30oveq12d 5869 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( ( Re
`  ( c  +  ( _i  x.  d
) ) ) ^
2 )  +  ( ( Im `  (
c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( c ^ 2 )  +  ( d ^
2 ) ) )
3222, 31eqtrd 2203 . . . . . . . . 9  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )
3319, 32oveqan12d 5870 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
3433eqcomd 2176 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
35 fveq2 5494 . . . . . . . . . . 11  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  ( abs `  u )  =  ( abs `  (
a  +  ( _i  x.  b ) ) ) )
3635oveq1d 5866 . . . . . . . . . 10  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( abs `  u
) ^ 2 )  =  ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) )
3736oveq1d 5866 . . . . . . . . 9  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
3837eqeq2d 2182 . . . . . . . 8  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
39 fveq2 5494 . . . . . . . . . . 11  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  ( abs `  v )  =  ( abs `  (
c  +  ( _i  x.  d ) ) ) )
4039oveq1d 5866 . . . . . . . . . 10  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( abs `  v
) ^ 2 )  =  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )
4140oveq2d 5867 . . . . . . . . 9  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
4241eqeq2d 2182 . . . . . . . 8  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) ) )
4338, 42rspc2ev 2849 . . . . . . 7  |-  ( ( ( a  +  ( _i  x.  b ) )  e.  ZZ[_i]  /\  (
c  +  ( _i  x.  d ) )  e.  ZZ[_i]  /\  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
444, 6, 34, 43syl3anc 1233 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
45 eqeq1 2177 . . . . . . 7  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
46452rexbidv 2495 . . . . . 6  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) ) )
4744, 46syl5ibrcom 156 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4847rexlimdvva 2595 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4948rexlimivv 2593 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
502, 49sylbi 120 . 2  |-  ( A  e.  S  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
5114sqlem4a 12332 . . . 4  |-  ( ( u  e.  ZZ[_i]  /\  v  e.  ZZ[_i]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S
)
52 eleq1a 2242 . . . 4  |-  ( ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S  ->  ( A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S ) )
5351, 52syl 14 . . 3  |-  ( ( u  e.  ZZ[_i]  /\  v  e.  ZZ[_i]
)  ->  ( A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) )  ->  A  e.  S ) )
5453rexlimivv 2593 . 2  |-  ( E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S )
5550, 54impbii 125 1  |-  ( A  e.  S  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   E.wrex 2449   ` cfv 5196  (class class class)co 5851   CCcc 7761   RRcr 7762   _ici 7765    + caddc 7766    x. cmul 7768   2c2 8918   ZZcz 9201   ^cexp 10464   Recre 10793   Imcim 10794   abscabs 10950   ZZ[_i]cgz 12310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-rp 9600  df-seqfrec 10391  df-exp 10465  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-gz 12311
This theorem is referenced by:  mul4sq  12335
  Copyright terms: Public domain W3C validator