Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elimasng | GIF version |
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) |
Ref | Expression |
---|---|
elimasng | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3600 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
2 | 1 | imaeq2d 4963 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵})) |
3 | 2 | eleq2d 2245 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵}))) |
4 | opeq1 3774 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝑦, 𝑧〉 = 〈𝐵, 𝑧〉) | |
5 | 4 | eleq1d 2244 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝑦, 𝑧〉 ∈ 𝐴 ↔ 〈𝐵, 𝑧〉 ∈ 𝐴)) |
6 | 3, 5 | bibi12d 235 | . 2 ⊢ (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝑧〉 ∈ 𝐴))) |
7 | eleq1 2238 | . . 3 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵}))) | |
8 | opeq2 3775 | . . . 4 ⊢ (𝑧 = 𝐶 → 〈𝐵, 𝑧〉 = 〈𝐵, 𝐶〉) | |
9 | 8 | eleq1d 2244 | . . 3 ⊢ (𝑧 = 𝐶 → (〈𝐵, 𝑧〉 ∈ 𝐴 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
10 | 7, 9 | bibi12d 235 | . 2 ⊢ (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝑧〉 ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴))) |
11 | vex 2738 | . . 3 ⊢ 𝑦 ∈ V | |
12 | vex 2738 | . . 3 ⊢ 𝑧 ∈ V | |
13 | 11, 12 | elimasn 4988 | . 2 ⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) |
14 | 6, 10, 13 | vtocl2g 2799 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 {csn 3589 〈cop 3592 “ cima 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 |
This theorem is referenced by: eliniseg 4991 inimasn 5038 dffv3g 5503 fvimacnv 5623 funfvima3 5741 elecg 6563 imasnopn 13379 |
Copyright terms: Public domain | W3C validator |