| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elimasng | GIF version | ||
| Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) |
| Ref | Expression |
|---|---|
| elimasng | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
| 2 | 1 | imaeq2d 5067 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵})) |
| 3 | 2 | eleq2d 2299 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵}))) |
| 4 | opeq1 3856 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝑦, 𝑧〉 = 〈𝐵, 𝑧〉) | |
| 5 | 4 | eleq1d 2298 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝑦, 𝑧〉 ∈ 𝐴 ↔ 〈𝐵, 𝑧〉 ∈ 𝐴)) |
| 6 | 3, 5 | bibi12d 235 | . 2 ⊢ (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝑧〉 ∈ 𝐴))) |
| 7 | eleq1 2292 | . . 3 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵}))) | |
| 8 | opeq2 3857 | . . . 4 ⊢ (𝑧 = 𝐶 → 〈𝐵, 𝑧〉 = 〈𝐵, 𝐶〉) | |
| 9 | 8 | eleq1d 2298 | . . 3 ⊢ (𝑧 = 𝐶 → (〈𝐵, 𝑧〉 ∈ 𝐴 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
| 10 | 7, 9 | bibi12d 235 | . 2 ⊢ (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝑧〉 ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴))) |
| 11 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 12 | vex 2802 | . . 3 ⊢ 𝑧 ∈ V | |
| 13 | 11, 12 | elimasn 5094 | . 2 ⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) |
| 14 | 6, 10, 13 | vtocl2g 2865 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {csn 3666 〈cop 3669 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: eliniseg 5097 inimasn 5145 dffv3g 5622 fvimacnv 5749 funfvima3 5872 elecg 6718 imasnopn 14967 |
| Copyright terms: Public domain | W3C validator |