ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasng GIF version

Theorem elimasng 4907
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.)
Assertion
Ref Expression
elimasng ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))

Proof of Theorem elimasng
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3538 . . . . 5 (𝑦 = 𝐵 → {𝑦} = {𝐵})
21imaeq2d 4881 . . . 4 (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵}))
32eleq2d 2209 . . 3 (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵})))
4 opeq1 3705 . . . 4 (𝑦 = 𝐵 → ⟨𝑦, 𝑧⟩ = ⟨𝐵, 𝑧⟩)
54eleq1d 2208 . . 3 (𝑦 = 𝐵 → (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴))
63, 5bibi12d 234 . 2 (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴)))
7 eleq1 2202 . . 3 (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵})))
8 opeq2 3706 . . . 4 (𝑧 = 𝐶 → ⟨𝐵, 𝑧⟩ = ⟨𝐵, 𝐶⟩)
98eleq1d 2208 . . 3 (𝑧 = 𝐶 → (⟨𝐵, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
107, 9bibi12d 234 . 2 (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)))
11 vex 2689 . . 3 𝑦 ∈ V
12 vex 2689 . . 3 𝑧 ∈ V
1311, 12elimasn 4906 . 2 (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)
146, 10, 13vtocl2g 2750 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {csn 3527  cop 3530  cima 4542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552
This theorem is referenced by:  eliniseg  4909  inimasn  4956  dffv3g  5417  fvimacnv  5535  funfvima3  5651  elecg  6467  imasnopn  12468
  Copyright terms: Public domain W3C validator