![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elimasng | GIF version |
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) |
Ref | Expression |
---|---|
elimasng | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3604 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
2 | 1 | imaeq2d 4971 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵})) |
3 | 2 | eleq2d 2247 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵}))) |
4 | opeq1 3779 | . . . 4 ⊢ (𝑦 = 𝐵 → ⟨𝑦, 𝑧⟩ = ⟨𝐵, 𝑧⟩) | |
5 | 4 | eleq1d 2246 | . . 3 ⊢ (𝑦 = 𝐵 → (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴)) |
6 | 3, 5 | bibi12d 235 | . 2 ⊢ (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴))) |
7 | eleq1 2240 | . . 3 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵}))) | |
8 | opeq2 3780 | . . . 4 ⊢ (𝑧 = 𝐶 → ⟨𝐵, 𝑧⟩ = ⟨𝐵, 𝐶⟩) | |
9 | 8 | eleq1d 2246 | . . 3 ⊢ (𝑧 = 𝐶 → (⟨𝐵, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) |
10 | 7, 9 | bibi12d 235 | . 2 ⊢ (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))) |
11 | vex 2741 | . . 3 ⊢ 𝑦 ∈ V | |
12 | vex 2741 | . . 3 ⊢ 𝑧 ∈ V | |
13 | 11, 12 | elimasn 4996 | . 2 ⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴) |
14 | 6, 10, 13 | vtocl2g 2802 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {csn 3593 ⟨cop 3596 “ cima 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-xp 4633 df-cnv 4635 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 |
This theorem is referenced by: eliniseg 4999 inimasn 5047 dffv3g 5512 fvimacnv 5632 funfvima3 5751 elecg 6573 imasnopn 13802 |
Copyright terms: Public domain | W3C validator |