Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elimasng | GIF version |
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) |
Ref | Expression |
---|---|
elimasng | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3587 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) | |
2 | 1 | imaeq2d 4946 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵})) |
3 | 2 | eleq2d 2236 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵}))) |
4 | opeq1 3758 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝑦, 𝑧〉 = 〈𝐵, 𝑧〉) | |
5 | 4 | eleq1d 2235 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝑦, 𝑧〉 ∈ 𝐴 ↔ 〈𝐵, 𝑧〉 ∈ 𝐴)) |
6 | 3, 5 | bibi12d 234 | . 2 ⊢ (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝑧〉 ∈ 𝐴))) |
7 | eleq1 2229 | . . 3 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵}))) | |
8 | opeq2 3759 | . . . 4 ⊢ (𝑧 = 𝐶 → 〈𝐵, 𝑧〉 = 〈𝐵, 𝐶〉) | |
9 | 8 | eleq1d 2235 | . . 3 ⊢ (𝑧 = 𝐶 → (〈𝐵, 𝑧〉 ∈ 𝐴 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
10 | 7, 9 | bibi12d 234 | . 2 ⊢ (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝑧〉 ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴))) |
11 | vex 2729 | . . 3 ⊢ 𝑦 ∈ V | |
12 | vex 2729 | . . 3 ⊢ 𝑧 ∈ V | |
13 | 11, 12 | elimasn 4971 | . 2 ⊢ (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 〈𝑦, 𝑧〉 ∈ 𝐴) |
14 | 6, 10, 13 | vtocl2g 2790 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {csn 3576 〈cop 3579 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: eliniseg 4974 inimasn 5021 dffv3g 5482 fvimacnv 5600 funfvima3 5718 elecg 6539 imasnopn 12939 |
Copyright terms: Public domain | W3C validator |