ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasng GIF version

Theorem elimasng 4979
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.)
Assertion
Ref Expression
elimasng ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))

Proof of Theorem elimasng
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3594 . . . . 5 (𝑦 = 𝐵 → {𝑦} = {𝐵})
21imaeq2d 4953 . . . 4 (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵}))
32eleq2d 2240 . . 3 (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵})))
4 opeq1 3765 . . . 4 (𝑦 = 𝐵 → ⟨𝑦, 𝑧⟩ = ⟨𝐵, 𝑧⟩)
54eleq1d 2239 . . 3 (𝑦 = 𝐵 → (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴))
63, 5bibi12d 234 . 2 (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴)))
7 eleq1 2233 . . 3 (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵})))
8 opeq2 3766 . . . 4 (𝑧 = 𝐶 → ⟨𝐵, 𝑧⟩ = ⟨𝐵, 𝐶⟩)
98eleq1d 2239 . . 3 (𝑧 = 𝐶 → (⟨𝐵, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
107, 9bibi12d 234 . 2 (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)))
11 vex 2733 . . 3 𝑦 ∈ V
12 vex 2733 . . 3 𝑧 ∈ V
1311, 12elimasn 4978 . 2 (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)
146, 10, 13vtocl2g 2794 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {csn 3583  cop 3586  cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  eliniseg  4981  inimasn  5028  dffv3g  5492  fvimacnv  5611  funfvima3  5729  elecg  6551  imasnopn  13093
  Copyright terms: Public domain W3C validator