Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1imaen2g | Unicode version |
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6772 does not need ax-setind 4521.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
f1imaen2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 527 | . . 3 | |
2 | simplr 525 | . . . 4 | |
3 | f1f 5403 | . . . . . 6 | |
4 | imassrn 4964 | . . . . . . 7 | |
5 | frn 5356 | . . . . . . 7 | |
6 | 4, 5 | sstrid 3158 | . . . . . 6 |
7 | 3, 6 | syl 14 | . . . . 5 |
8 | 7 | ad2antrr 485 | . . . 4 |
9 | 2, 8 | ssexd 4129 | . . 3 |
10 | f1ores 5457 | . . . 4 | |
11 | 10 | ad2ant2r 506 | . . 3 |
12 | f1oen2g 6733 | . . 3 | |
13 | 1, 9, 11, 12 | syl3anc 1233 | . 2 |
14 | 13 | ensymd 6761 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 cvv 2730 wss 3121 class class class wbr 3989 crn 4612 cres 4613 cima 4614 wf 5194 wf1 5195 wf1o 5197 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-er 6513 df-en 6719 |
This theorem is referenced by: ssenen 6829 phplem4 6833 phplem4dom 6840 phplem4on 6845 fiintim 6906 |
Copyright terms: Public domain | W3C validator |