| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1imaen2g | Unicode version | ||
| Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6886 does not need ax-setind 4585.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| f1imaen2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 |
. . 3
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | f1f 5481 |
. . . . . 6
| |
| 4 | imassrn 5033 |
. . . . . . 7
| |
| 5 | frn 5434 |
. . . . . . 7
| |
| 6 | 4, 5 | sstrid 3204 |
. . . . . 6
|
| 7 | 3, 6 | syl 14 |
. . . . 5
|
| 8 | 7 | ad2antrr 488 |
. . . 4
|
| 9 | 2, 8 | ssexd 4184 |
. . 3
|
| 10 | f1ores 5537 |
. . . 4
| |
| 11 | 10 | ad2ant2r 509 |
. . 3
|
| 12 | f1oen2g 6846 |
. . 3
| |
| 13 | 1, 9, 11, 12 | syl3anc 1250 |
. 2
|
| 14 | 13 | ensymd 6875 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-er 6620 df-en 6828 |
| This theorem is referenced by: ssenen 6948 phplem4 6952 phplem4dom 6959 phplem4on 6964 fiintim 7028 |
| Copyright terms: Public domain | W3C validator |