| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1imaen2g | Unicode version | ||
| Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6909 does not need ax-setind 4603.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| f1imaen2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 |
. . 3
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | f1f 5503 |
. . . . . 6
| |
| 4 | imassrn 5052 |
. . . . . . 7
| |
| 5 | frn 5454 |
. . . . . . 7
| |
| 6 | 4, 5 | sstrid 3212 |
. . . . . 6
|
| 7 | 3, 6 | syl 14 |
. . . . 5
|
| 8 | 7 | ad2antrr 488 |
. . . 4
|
| 9 | 2, 8 | ssexd 4200 |
. . 3
|
| 10 | f1ores 5559 |
. . . 4
| |
| 11 | 10 | ad2ant2r 509 |
. . 3
|
| 12 | f1oen2g 6869 |
. . 3
| |
| 13 | 1, 9, 11, 12 | syl3anc 1250 |
. 2
|
| 14 | 13 | ensymd 6898 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-er 6643 df-en 6851 |
| This theorem is referenced by: ssenen 6973 phplem4 6977 phplem4dom 6984 phplem4on 6990 fiintim 7054 |
| Copyright terms: Public domain | W3C validator |