ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaen2g Unicode version

Theorem f1imaen2g 6908
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6909 does not need ax-setind 4603.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
f1imaen2g  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  ~~  C )

Proof of Theorem f1imaen2g
StepHypRef Expression
1 simprr 531 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  C  e.  V )
2 simplr 528 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  B  e.  V )
3 f1f 5503 . . . . . 6  |-  ( F : A -1-1-> B  ->  F : A --> B )
4 imassrn 5052 . . . . . . 7  |-  ( F
" C )  C_  ran  F
5 frn 5454 . . . . . . 7  |-  ( F : A --> B  ->  ran  F  C_  B )
64, 5sstrid 3212 . . . . . 6  |-  ( F : A --> B  -> 
( F " C
)  C_  B )
73, 6syl 14 . . . . 5  |-  ( F : A -1-1-> B  -> 
( F " C
)  C_  B )
87ad2antrr 488 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  C_  B )
92, 8ssexd 4200 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  e.  _V )
10 f1ores 5559 . . . 4  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
1110ad2ant2r 509 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F  |`  C ) : C -1-1-onto-> ( F " C
) )
12 f1oen2g 6869 . . 3  |-  ( ( C  e.  V  /\  ( F " C )  e.  _V  /\  ( F  |`  C ) : C -1-1-onto-> ( F " C
) )  ->  C  ~~  ( F " C
) )
131, 9, 11, 12syl3anc 1250 . 2  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  C  ~~  ( F " C ) )
1413ensymd 6898 1  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  ~~  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   _Vcvv 2776    C_ wss 3174   class class class wbr 4059   ran crn 4694    |` cres 4695   "cima 4696   -->wf 5286   -1-1->wf1 5287   -1-1-onto->wf1o 5289    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-er 6643  df-en 6851
This theorem is referenced by:  ssenen  6973  phplem4  6977  phplem4dom  6984  phplem4on  6990  fiintim  7054
  Copyright terms: Public domain W3C validator