ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaen2g Unicode version

Theorem f1imaen2g 6885
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6886 does not need ax-setind 4585.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
f1imaen2g  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  ~~  C )

Proof of Theorem f1imaen2g
StepHypRef Expression
1 simprr 531 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  C  e.  V )
2 simplr 528 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  B  e.  V )
3 f1f 5481 . . . . . 6  |-  ( F : A -1-1-> B  ->  F : A --> B )
4 imassrn 5033 . . . . . . 7  |-  ( F
" C )  C_  ran  F
5 frn 5434 . . . . . . 7  |-  ( F : A --> B  ->  ran  F  C_  B )
64, 5sstrid 3204 . . . . . 6  |-  ( F : A --> B  -> 
( F " C
)  C_  B )
73, 6syl 14 . . . . 5  |-  ( F : A -1-1-> B  -> 
( F " C
)  C_  B )
87ad2antrr 488 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  C_  B )
92, 8ssexd 4184 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  e.  _V )
10 f1ores 5537 . . . 4  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
1110ad2ant2r 509 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F  |`  C ) : C -1-1-onto-> ( F " C
) )
12 f1oen2g 6846 . . 3  |-  ( ( C  e.  V  /\  ( F " C )  e.  _V  /\  ( F  |`  C ) : C -1-1-onto-> ( F " C
) )  ->  C  ~~  ( F " C
) )
131, 9, 11, 12syl3anc 1250 . 2  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  C  ~~  ( F " C ) )
1413ensymd 6875 1  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  ~~  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   _Vcvv 2772    C_ wss 3166   class class class wbr 4044   ran crn 4676    |` cres 4677   "cima 4678   -->wf 5267   -1-1->wf1 5268   -1-1-onto->wf1o 5270    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-er 6620  df-en 6828
This theorem is referenced by:  ssenen  6948  phplem4  6952  phplem4dom  6959  phplem4on  6964  fiintim  7028
  Copyright terms: Public domain W3C validator