ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dom2g Unicode version

Theorem f1dom2g 6756
Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 6758 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
f1dom2g  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  A  ~<_  B )

Proof of Theorem f1dom2g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1f 5422 . . . . 5  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 fex2 5385 . . . . 5  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  W )  ->  F  e.  _V )
31, 2syl3an1 1271 . . . 4  |-  ( ( F : A -1-1-> B  /\  A  e.  V  /\  B  e.  W
)  ->  F  e.  _V )
433coml 1210 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  F  e.  _V )
5 simp3 999 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
6 f1eq1 5417 . . . 4  |-  ( f  =  F  ->  (
f : A -1-1-> B  <->  F : A -1-1-> B ) )
76spcegv 2826 . . 3  |-  ( F  e.  _V  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
84, 5, 7sylc 62 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  E. f  f : A -1-1-> B )
9 brdomg 6748 . . 3  |-  ( B  e.  W  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
1093ad2ant2 1019 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  ( A  ~<_  B  <->  E. f  f : A -1-1-> B ) )
118, 10mpbird 167 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978   E.wex 1492    e. wcel 2148   _Vcvv 2738   class class class wbr 4004   -->wf 5213   -1-1->wf1 5214    ~<_ cdom 6739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-dom 6742
This theorem is referenced by:  ssdomg  6778
  Copyright terms: Public domain W3C validator