ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dom2g Unicode version

Theorem f1dom2g 6815
Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 6817 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
f1dom2g  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  A  ~<_  B )

Proof of Theorem f1dom2g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1f 5463 . . . . 5  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 fex2 5426 . . . . 5  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  W )  ->  F  e.  _V )
31, 2syl3an1 1282 . . . 4  |-  ( ( F : A -1-1-> B  /\  A  e.  V  /\  B  e.  W
)  ->  F  e.  _V )
433coml 1212 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  F  e.  _V )
5 simp3 1001 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
6 f1eq1 5458 . . . 4  |-  ( f  =  F  ->  (
f : A -1-1-> B  <->  F : A -1-1-> B ) )
76spcegv 2852 . . 3  |-  ( F  e.  _V  ->  ( F : A -1-1-> B  ->  E. f  f : A -1-1-> B ) )
84, 5, 7sylc 62 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  E. f  f : A -1-1-> B )
9 brdomg 6807 . . 3  |-  ( B  e.  W  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
1093ad2ant2 1021 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  ( A  ~<_  B  <->  E. f  f : A -1-1-> B ) )
118, 10mpbird 167 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980   E.wex 1506    e. wcel 2167   _Vcvv 2763   class class class wbr 4033   -->wf 5254   -1-1->wf1 5255    ~<_ cdom 6798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-dom 6801
This theorem is referenced by:  ssdomg  6837
  Copyright terms: Public domain W3C validator