ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txhmeo Unicode version

Theorem txhmeo 14639
Description: Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
txhmeo.1  |-  X  = 
U. J
txhmeo.2  |-  Y  = 
U. K
txhmeo.3  |-  ( ph  ->  F  e.  ( J
Homeo L ) )
txhmeo.4  |-  ( ph  ->  G  e.  ( K
Homeo M ) )
Assertion
Ref Expression
txhmeo  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    ph, x, y   
x, G, y    x, L, y    x, X, y   
x, Y, y    x, M, y

Proof of Theorem txhmeo
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txhmeo.3 . . . . . 6  |-  ( ph  ->  F  e.  ( J
Homeo L ) )
2 hmeocn 14625 . . . . . 6  |-  ( F  e.  ( J Homeo L )  ->  F  e.  ( J  Cn  L
) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( J  Cn  L ) )
4 cntop1 14521 . . . . 5  |-  ( F  e.  ( J  Cn  L )  ->  J  e.  Top )
53, 4syl 14 . . . 4  |-  ( ph  ->  J  e.  Top )
6 txhmeo.1 . . . . 5  |-  X  = 
U. J
76toptopon 14338 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
85, 7sylib 122 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 txhmeo.4 . . . . . 6  |-  ( ph  ->  G  e.  ( K
Homeo M ) )
10 hmeocn 14625 . . . . . 6  |-  ( G  e.  ( K Homeo M )  ->  G  e.  ( K  Cn  M
) )
119, 10syl 14 . . . . 5  |-  ( ph  ->  G  e.  ( K  Cn  M ) )
12 cntop1 14521 . . . . 5  |-  ( G  e.  ( K  Cn  M )  ->  K  e.  Top )
1311, 12syl 14 . . . 4  |-  ( ph  ->  K  e.  Top )
14 txhmeo.2 . . . . 5  |-  Y  = 
U. K
1514toptopon 14338 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
1613, 15sylib 122 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
178, 16cnmpt1st 14608 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
188, 16, 17, 3cnmpt21f 14612 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( F `  x
) )  e.  ( ( J  tX  K
)  Cn  L ) )
198, 16cnmpt2nd 14609 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K
)  Cn  K ) )
208, 16, 19, 11cnmpt21f 14612 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( G `  y
) )  e.  ( ( J  tX  K
)  Cn  M ) )
218, 16, 18, 20cnmpt2t 14613 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) ) )
22 vex 2766 . . . . . . . . . . 11  |-  x  e. 
_V
23 vex 2766 . . . . . . . . . . 11  |-  y  e. 
_V
2422, 23op1std 6215 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( 1st `  u
)  =  x )
2524fveq2d 5565 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( F `  ( 1st `  u ) )  =  ( F `
 x ) )
2622, 23op2ndd 6216 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( 2nd `  u
)  =  y )
2726fveq2d 5565 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( G `  ( 2nd `  u ) )  =  ( G `
 y ) )
2825, 27opeq12d 3817 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >.  =  <. ( F `  x ) ,  ( G `  y ) >. )
2928mpompt 6018 . . . . . . 7  |-  ( u  e.  ( X  X.  Y )  |->  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)
3029eqcomi 2200 . . . . . 6  |-  ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  ( u  e.  ( X  X.  Y
)  |->  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >. )
31 eqid 2196 . . . . . . . . . 10  |-  U. L  =  U. L
326, 31cnf 14524 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  L )  ->  F : X --> U. L )
333, 32syl 14 . . . . . . . 8  |-  ( ph  ->  F : X --> U. L
)
34 xp1st 6232 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  ( 1st `  u )  e.  X )
35 ffvelcdm 5698 . . . . . . . 8  |-  ( ( F : X --> U. L  /\  ( 1st `  u
)  e.  X )  ->  ( F `  ( 1st `  u ) )  e.  U. L
)
3633, 34, 35syl2an 289 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  ( F `  ( 1st `  u ) )  e. 
U. L )
37 eqid 2196 . . . . . . . . . 10  |-  U. M  =  U. M
3814, 37cnf 14524 . . . . . . . . 9  |-  ( G  e.  ( K  Cn  M )  ->  G : Y --> U. M )
3911, 38syl 14 . . . . . . . 8  |-  ( ph  ->  G : Y --> U. M
)
40 xp2nd 6233 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  ( 2nd `  u )  e.  Y )
41 ffvelcdm 5698 . . . . . . . 8  |-  ( ( G : Y --> U. M  /\  ( 2nd `  u
)  e.  Y )  ->  ( G `  ( 2nd `  u ) )  e.  U. M
)
4239, 40, 41syl2an 289 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  ( G `  ( 2nd `  u ) )  e. 
U. M )
4336, 42opelxpd 4697 . . . . . 6  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>.  e.  ( U. L  X.  U. M ) )
446, 31hmeof1o 14629 . . . . . . . . . 10  |-  ( F  e.  ( J Homeo L )  ->  F : X
-1-1-onto-> U. L )
451, 44syl 14 . . . . . . . . 9  |-  ( ph  ->  F : X -1-1-onto-> U. L
)
46 f1ocnv 5520 . . . . . . . . 9  |-  ( F : X -1-1-onto-> U. L  ->  `' F : U. L -1-1-onto-> X )
47 f1of 5507 . . . . . . . . 9  |-  ( `' F : U. L -1-1-onto-> X  ->  `' F : U. L --> X )
4845, 46, 473syl 17 . . . . . . . 8  |-  ( ph  ->  `' F : U. L --> X )
49 xp1st 6232 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( 1st `  v
)  e.  U. L
)
50 ffvelcdm 5698 . . . . . . . 8  |-  ( ( `' F : U. L --> X  /\  ( 1st `  v
)  e.  U. L
)  ->  ( `' F `  ( 1st `  v ) )  e.  X )
5148, 49, 50syl2an 289 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  -> 
( `' F `  ( 1st `  v ) )  e.  X )
5214, 37hmeof1o 14629 . . . . . . . . . 10  |-  ( G  e.  ( K Homeo M )  ->  G : Y
-1-1-onto-> U. M )
539, 52syl 14 . . . . . . . . 9  |-  ( ph  ->  G : Y -1-1-onto-> U. M
)
54 f1ocnv 5520 . . . . . . . . 9  |-  ( G : Y -1-1-onto-> U. M  ->  `' G : U. M -1-1-onto-> Y )
55 f1of 5507 . . . . . . . . 9  |-  ( `' G : U. M -1-1-onto-> Y  ->  `' G : U. M --> Y )
5653, 54, 553syl 17 . . . . . . . 8  |-  ( ph  ->  `' G : U. M --> Y )
57 xp2nd 6233 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( 2nd `  v
)  e.  U. M
)
58 ffvelcdm 5698 . . . . . . . 8  |-  ( ( `' G : U. M --> Y  /\  ( 2nd `  v
)  e.  U. M
)  ->  ( `' G `  ( 2nd `  v ) )  e.  Y )
5956, 57, 58syl2an 289 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  -> 
( `' G `  ( 2nd `  v ) )  e.  Y )
6051, 59opelxpd 4697 . . . . . 6  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  ->  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  e.  ( X  X.  Y
) )
6145adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  F : X -1-1-onto-> U. L )
6234ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 1st `  u
)  e.  X )
6349ad2antll 491 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 1st `  v
)  e.  U. L
)
64 f1ocnvfvb 5830 . . . . . . . . . 10  |-  ( ( F : X -1-1-onto-> U. L  /\  ( 1st `  u
)  e.  X  /\  ( 1st `  v )  e.  U. L )  ->  ( ( F `
 ( 1st `  u
) )  =  ( 1st `  v )  <-> 
( `' F `  ( 1st `  v ) )  =  ( 1st `  u ) ) )
6561, 62, 63, 64syl3anc 1249 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( F `
 ( 1st `  u
) )  =  ( 1st `  v )  <-> 
( `' F `  ( 1st `  v ) )  =  ( 1st `  u ) ) )
66 eqcom 2198 . . . . . . . . 9  |-  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  <->  ( F `  ( 1st `  u ) )  =  ( 1st `  v ) )
67 eqcom 2198 . . . . . . . . 9  |-  ( ( 1st `  u )  =  ( `' F `  ( 1st `  v
) )  <->  ( `' F `  ( 1st `  v ) )  =  ( 1st `  u
) )
6865, 66, 673bitr4g 223 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  <->  ( 1st `  u )  =  ( `' F `  ( 1st `  v ) ) ) )
6953adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  G : Y -1-1-onto-> U. M )
7040ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 2nd `  u
)  e.  Y )
7157ad2antll 491 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 2nd `  v
)  e.  U. M
)
72 f1ocnvfvb 5830 . . . . . . . . . 10  |-  ( ( G : Y -1-1-onto-> U. M  /\  ( 2nd `  u
)  e.  Y  /\  ( 2nd `  v )  e.  U. M )  ->  ( ( G `
 ( 2nd `  u
) )  =  ( 2nd `  v )  <-> 
( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u ) ) )
7369, 70, 71, 72syl3anc 1249 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( G `
 ( 2nd `  u
) )  =  ( 2nd `  v )  <-> 
( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u ) ) )
74 eqcom 2198 . . . . . . . . 9  |-  ( ( 2nd `  v )  =  ( G `  ( 2nd `  u ) )  <->  ( G `  ( 2nd `  u ) )  =  ( 2nd `  v ) )
75 eqcom 2198 . . . . . . . . 9  |-  ( ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) )  <->  ( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u
) )
7673, 74, 753bitr4g 223 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( 2nd `  v )  =  ( G `  ( 2nd `  u ) )  <->  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v ) ) ) )
7768, 76anbi12d 473 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) )  <-> 
( ( 1st `  u
)  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
78 eqop 6244 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( v  =  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>. 
<->  ( ( 1st `  v
)  =  ( F `
 ( 1st `  u
) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) ) ) )
7978ad2antll 491 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( v  = 
<. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) ) >.  <->  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) ) ) )
80 eqop 6244 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  (
u  =  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  ( ( 1st `  u )  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
8180ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( u  = 
<. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  ( ( 1st `  u
)  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
8277, 79, 813bitr4rd 221 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( u  = 
<. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  v  =  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >. )
)
8330, 43, 60, 82f1ocnv2d 6131 . . . . 5  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. ) : ( X  X.  Y ) -1-1-onto-> ( U. L  X.  U. M )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  ( v  e.  ( U. L  X.  U. M )  |->  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >. ) ) )
8483simprd 114 . . . 4  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  =  (
v  e.  ( U. L  X.  U. M ) 
|->  <. ( `' F `  ( 1st `  v
) ) ,  ( `' G `  ( 2nd `  v ) ) >.
) )
85 vex 2766 . . . . . . . 8  |-  z  e. 
_V
86 vex 2766 . . . . . . . 8  |-  w  e. 
_V
8785, 86op1std 6215 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( 1st `  v
)  =  z )
8887fveq2d 5565 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( `' F `  ( 1st `  v
) )  =  ( `' F `  z ) )
8985, 86op2ndd 6216 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( 2nd `  v
)  =  w )
9089fveq2d 5565 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( `' G `  ( 2nd `  v
) )  =  ( `' G `  w ) )
9188, 90opeq12d 3817 . . . . 5  |-  ( v  =  <. z ,  w >.  ->  <. ( `' F `  ( 1st `  v
) ) ,  ( `' G `  ( 2nd `  v ) ) >.  =  <. ( `' F `  z ) ,  ( `' G `  w )
>. )
9291mpompt 6018 . . . 4  |-  ( v  e.  ( U. L  X.  U. M )  |->  <.
( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.
)  =  ( z  e.  U. L ,  w  e.  U. M  |->  <.
( `' F `  z ) ,  ( `' G `  w )
>. )
9384, 92eqtrdi 2245 . . 3  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  =  (
z  e.  U. L ,  w  e.  U. M  |-> 
<. ( `' F `  z ) ,  ( `' G `  w )
>. ) )
94 cntop2 14522 . . . . . 6  |-  ( F  e.  ( J  Cn  L )  ->  L  e.  Top )
953, 94syl 14 . . . . 5  |-  ( ph  ->  L  e.  Top )
9631toptopon 14338 . . . . 5  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
9795, 96sylib 122 . . . 4  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
98 cntop2 14522 . . . . . 6  |-  ( G  e.  ( K  Cn  M )  ->  M  e.  Top )
9911, 98syl 14 . . . . 5  |-  ( ph  ->  M  e.  Top )
10037toptopon 14338 . . . . 5  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
10199, 100sylib 122 . . . 4  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
10297, 101cnmpt1st 14608 . . . . 5  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  z )  e.  ( ( L  tX  M )  Cn  L
) )
103 hmeocnvcn 14626 . . . . . 6  |-  ( F  e.  ( J Homeo L )  ->  `' F  e.  ( L  Cn  J
) )
1041, 103syl 14 . . . . 5  |-  ( ph  ->  `' F  e.  ( L  Cn  J ) )
10597, 101, 102, 104cnmpt21f 14612 . . . 4  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( `' F `  z ) )  e.  ( ( L  tX  M )  Cn  J
) )
10697, 101cnmpt2nd 14609 . . . . 5  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  w )  e.  ( ( L  tX  M )  Cn  M
) )
107 hmeocnvcn 14626 . . . . . 6  |-  ( G  e.  ( K Homeo M )  ->  `' G  e.  ( M  Cn  K
) )
1089, 107syl 14 . . . . 5  |-  ( ph  ->  `' G  e.  ( M  Cn  K ) )
10997, 101, 106, 108cnmpt21f 14612 . . . 4  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( `' G `  w ) )  e.  ( ( L  tX  M )  Cn  K
) )
11097, 101, 105, 109cnmpt2t 14613 . . 3  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  <. ( `' F `  z ) ,  ( `' G `  w )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) )
11193, 110eqeltrd 2273 . 2  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) )
112 ishmeo 14624 . 2  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) )  <->  ( (
x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) ) )
11321, 111, 112sylanbrc 417 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   <.cop 3626   U.cuni 3840    |-> cmpt 4095    X. cxp 4662   `'ccnv 4663   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206   Topctop 14317  TopOnctopon 14330    Cn ccn 14505    tX ctx 14572   Homeochmeo 14620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-topgen 12962  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508  df-tx 14573  df-hmeo 14621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator