ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txhmeo Unicode version

Theorem txhmeo 14906
Description: Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
txhmeo.1  |-  X  = 
U. J
txhmeo.2  |-  Y  = 
U. K
txhmeo.3  |-  ( ph  ->  F  e.  ( J
Homeo L ) )
txhmeo.4  |-  ( ph  ->  G  e.  ( K
Homeo M ) )
Assertion
Ref Expression
txhmeo  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    ph, x, y   
x, G, y    x, L, y    x, X, y   
x, Y, y    x, M, y

Proof of Theorem txhmeo
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txhmeo.3 . . . . . 6  |-  ( ph  ->  F  e.  ( J
Homeo L ) )
2 hmeocn 14892 . . . . . 6  |-  ( F  e.  ( J Homeo L )  ->  F  e.  ( J  Cn  L
) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( J  Cn  L ) )
4 cntop1 14788 . . . . 5  |-  ( F  e.  ( J  Cn  L )  ->  J  e.  Top )
53, 4syl 14 . . . 4  |-  ( ph  ->  J  e.  Top )
6 txhmeo.1 . . . . 5  |-  X  = 
U. J
76toptopon 14605 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
85, 7sylib 122 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 txhmeo.4 . . . . . 6  |-  ( ph  ->  G  e.  ( K
Homeo M ) )
10 hmeocn 14892 . . . . . 6  |-  ( G  e.  ( K Homeo M )  ->  G  e.  ( K  Cn  M
) )
119, 10syl 14 . . . . 5  |-  ( ph  ->  G  e.  ( K  Cn  M ) )
12 cntop1 14788 . . . . 5  |-  ( G  e.  ( K  Cn  M )  ->  K  e.  Top )
1311, 12syl 14 . . . 4  |-  ( ph  ->  K  e.  Top )
14 txhmeo.2 . . . . 5  |-  Y  = 
U. K
1514toptopon 14605 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
1613, 15sylib 122 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
178, 16cnmpt1st 14875 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
188, 16, 17, 3cnmpt21f 14879 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( F `  x
) )  e.  ( ( J  tX  K
)  Cn  L ) )
198, 16cnmpt2nd 14876 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K
)  Cn  K ) )
208, 16, 19, 11cnmpt21f 14879 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( G `  y
) )  e.  ( ( J  tX  K
)  Cn  M ) )
218, 16, 18, 20cnmpt2t 14880 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) ) )
22 vex 2779 . . . . . . . . . . 11  |-  x  e. 
_V
23 vex 2779 . . . . . . . . . . 11  |-  y  e. 
_V
2422, 23op1std 6257 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( 1st `  u
)  =  x )
2524fveq2d 5603 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( F `  ( 1st `  u ) )  =  ( F `
 x ) )
2622, 23op2ndd 6258 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( 2nd `  u
)  =  y )
2726fveq2d 5603 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( G `  ( 2nd `  u ) )  =  ( G `
 y ) )
2825, 27opeq12d 3841 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >.  =  <. ( F `  x ) ,  ( G `  y ) >. )
2928mpompt 6060 . . . . . . 7  |-  ( u  e.  ( X  X.  Y )  |->  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)
3029eqcomi 2211 . . . . . 6  |-  ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  ( u  e.  ( X  X.  Y
)  |->  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >. )
31 eqid 2207 . . . . . . . . . 10  |-  U. L  =  U. L
326, 31cnf 14791 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  L )  ->  F : X --> U. L )
333, 32syl 14 . . . . . . . 8  |-  ( ph  ->  F : X --> U. L
)
34 xp1st 6274 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  ( 1st `  u )  e.  X )
35 ffvelcdm 5736 . . . . . . . 8  |-  ( ( F : X --> U. L  /\  ( 1st `  u
)  e.  X )  ->  ( F `  ( 1st `  u ) )  e.  U. L
)
3633, 34, 35syl2an 289 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  ( F `  ( 1st `  u ) )  e. 
U. L )
37 eqid 2207 . . . . . . . . . 10  |-  U. M  =  U. M
3814, 37cnf 14791 . . . . . . . . 9  |-  ( G  e.  ( K  Cn  M )  ->  G : Y --> U. M )
3911, 38syl 14 . . . . . . . 8  |-  ( ph  ->  G : Y --> U. M
)
40 xp2nd 6275 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  ( 2nd `  u )  e.  Y )
41 ffvelcdm 5736 . . . . . . . 8  |-  ( ( G : Y --> U. M  /\  ( 2nd `  u
)  e.  Y )  ->  ( G `  ( 2nd `  u ) )  e.  U. M
)
4239, 40, 41syl2an 289 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  ( G `  ( 2nd `  u ) )  e. 
U. M )
4336, 42opelxpd 4726 . . . . . 6  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>.  e.  ( U. L  X.  U. M ) )
446, 31hmeof1o 14896 . . . . . . . . . 10  |-  ( F  e.  ( J Homeo L )  ->  F : X
-1-1-onto-> U. L )
451, 44syl 14 . . . . . . . . 9  |-  ( ph  ->  F : X -1-1-onto-> U. L
)
46 f1ocnv 5557 . . . . . . . . 9  |-  ( F : X -1-1-onto-> U. L  ->  `' F : U. L -1-1-onto-> X )
47 f1of 5544 . . . . . . . . 9  |-  ( `' F : U. L -1-1-onto-> X  ->  `' F : U. L --> X )
4845, 46, 473syl 17 . . . . . . . 8  |-  ( ph  ->  `' F : U. L --> X )
49 xp1st 6274 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( 1st `  v
)  e.  U. L
)
50 ffvelcdm 5736 . . . . . . . 8  |-  ( ( `' F : U. L --> X  /\  ( 1st `  v
)  e.  U. L
)  ->  ( `' F `  ( 1st `  v ) )  e.  X )
5148, 49, 50syl2an 289 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  -> 
( `' F `  ( 1st `  v ) )  e.  X )
5214, 37hmeof1o 14896 . . . . . . . . . 10  |-  ( G  e.  ( K Homeo M )  ->  G : Y
-1-1-onto-> U. M )
539, 52syl 14 . . . . . . . . 9  |-  ( ph  ->  G : Y -1-1-onto-> U. M
)
54 f1ocnv 5557 . . . . . . . . 9  |-  ( G : Y -1-1-onto-> U. M  ->  `' G : U. M -1-1-onto-> Y )
55 f1of 5544 . . . . . . . . 9  |-  ( `' G : U. M -1-1-onto-> Y  ->  `' G : U. M --> Y )
5653, 54, 553syl 17 . . . . . . . 8  |-  ( ph  ->  `' G : U. M --> Y )
57 xp2nd 6275 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( 2nd `  v
)  e.  U. M
)
58 ffvelcdm 5736 . . . . . . . 8  |-  ( ( `' G : U. M --> Y  /\  ( 2nd `  v
)  e.  U. M
)  ->  ( `' G `  ( 2nd `  v ) )  e.  Y )
5956, 57, 58syl2an 289 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  -> 
( `' G `  ( 2nd `  v ) )  e.  Y )
6051, 59opelxpd 4726 . . . . . 6  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  ->  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  e.  ( X  X.  Y
) )
6145adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  F : X -1-1-onto-> U. L )
6234ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 1st `  u
)  e.  X )
6349ad2antll 491 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 1st `  v
)  e.  U. L
)
64 f1ocnvfvb 5872 . . . . . . . . . 10  |-  ( ( F : X -1-1-onto-> U. L  /\  ( 1st `  u
)  e.  X  /\  ( 1st `  v )  e.  U. L )  ->  ( ( F `
 ( 1st `  u
) )  =  ( 1st `  v )  <-> 
( `' F `  ( 1st `  v ) )  =  ( 1st `  u ) ) )
6561, 62, 63, 64syl3anc 1250 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( F `
 ( 1st `  u
) )  =  ( 1st `  v )  <-> 
( `' F `  ( 1st `  v ) )  =  ( 1st `  u ) ) )
66 eqcom 2209 . . . . . . . . 9  |-  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  <->  ( F `  ( 1st `  u ) )  =  ( 1st `  v ) )
67 eqcom 2209 . . . . . . . . 9  |-  ( ( 1st `  u )  =  ( `' F `  ( 1st `  v
) )  <->  ( `' F `  ( 1st `  v ) )  =  ( 1st `  u
) )
6865, 66, 673bitr4g 223 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  <->  ( 1st `  u )  =  ( `' F `  ( 1st `  v ) ) ) )
6953adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  G : Y -1-1-onto-> U. M )
7040ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 2nd `  u
)  e.  Y )
7157ad2antll 491 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 2nd `  v
)  e.  U. M
)
72 f1ocnvfvb 5872 . . . . . . . . . 10  |-  ( ( G : Y -1-1-onto-> U. M  /\  ( 2nd `  u
)  e.  Y  /\  ( 2nd `  v )  e.  U. M )  ->  ( ( G `
 ( 2nd `  u
) )  =  ( 2nd `  v )  <-> 
( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u ) ) )
7369, 70, 71, 72syl3anc 1250 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( G `
 ( 2nd `  u
) )  =  ( 2nd `  v )  <-> 
( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u ) ) )
74 eqcom 2209 . . . . . . . . 9  |-  ( ( 2nd `  v )  =  ( G `  ( 2nd `  u ) )  <->  ( G `  ( 2nd `  u ) )  =  ( 2nd `  v ) )
75 eqcom 2209 . . . . . . . . 9  |-  ( ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) )  <->  ( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u
) )
7673, 74, 753bitr4g 223 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( 2nd `  v )  =  ( G `  ( 2nd `  u ) )  <->  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v ) ) ) )
7768, 76anbi12d 473 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) )  <-> 
( ( 1st `  u
)  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
78 eqop 6286 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( v  =  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>. 
<->  ( ( 1st `  v
)  =  ( F `
 ( 1st `  u
) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) ) ) )
7978ad2antll 491 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( v  = 
<. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) ) >.  <->  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) ) ) )
80 eqop 6286 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  (
u  =  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  ( ( 1st `  u )  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
8180ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( u  = 
<. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  ( ( 1st `  u
)  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
8277, 79, 813bitr4rd 221 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( u  = 
<. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  v  =  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >. )
)
8330, 43, 60, 82f1ocnv2d 6173 . . . . 5  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. ) : ( X  X.  Y ) -1-1-onto-> ( U. L  X.  U. M )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  ( v  e.  ( U. L  X.  U. M )  |->  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >. ) ) )
8483simprd 114 . . . 4  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  =  (
v  e.  ( U. L  X.  U. M ) 
|->  <. ( `' F `  ( 1st `  v
) ) ,  ( `' G `  ( 2nd `  v ) ) >.
) )
85 vex 2779 . . . . . . . 8  |-  z  e. 
_V
86 vex 2779 . . . . . . . 8  |-  w  e. 
_V
8785, 86op1std 6257 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( 1st `  v
)  =  z )
8887fveq2d 5603 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( `' F `  ( 1st `  v
) )  =  ( `' F `  z ) )
8985, 86op2ndd 6258 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( 2nd `  v
)  =  w )
9089fveq2d 5603 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( `' G `  ( 2nd `  v
) )  =  ( `' G `  w ) )
9188, 90opeq12d 3841 . . . . 5  |-  ( v  =  <. z ,  w >.  ->  <. ( `' F `  ( 1st `  v
) ) ,  ( `' G `  ( 2nd `  v ) ) >.  =  <. ( `' F `  z ) ,  ( `' G `  w )
>. )
9291mpompt 6060 . . . 4  |-  ( v  e.  ( U. L  X.  U. M )  |->  <.
( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.
)  =  ( z  e.  U. L ,  w  e.  U. M  |->  <.
( `' F `  z ) ,  ( `' G `  w )
>. )
9384, 92eqtrdi 2256 . . 3  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  =  (
z  e.  U. L ,  w  e.  U. M  |-> 
<. ( `' F `  z ) ,  ( `' G `  w )
>. ) )
94 cntop2 14789 . . . . . 6  |-  ( F  e.  ( J  Cn  L )  ->  L  e.  Top )
953, 94syl 14 . . . . 5  |-  ( ph  ->  L  e.  Top )
9631toptopon 14605 . . . . 5  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
9795, 96sylib 122 . . . 4  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
98 cntop2 14789 . . . . . 6  |-  ( G  e.  ( K  Cn  M )  ->  M  e.  Top )
9911, 98syl 14 . . . . 5  |-  ( ph  ->  M  e.  Top )
10037toptopon 14605 . . . . 5  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
10199, 100sylib 122 . . . 4  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
10297, 101cnmpt1st 14875 . . . . 5  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  z )  e.  ( ( L  tX  M )  Cn  L
) )
103 hmeocnvcn 14893 . . . . . 6  |-  ( F  e.  ( J Homeo L )  ->  `' F  e.  ( L  Cn  J
) )
1041, 103syl 14 . . . . 5  |-  ( ph  ->  `' F  e.  ( L  Cn  J ) )
10597, 101, 102, 104cnmpt21f 14879 . . . 4  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( `' F `  z ) )  e.  ( ( L  tX  M )  Cn  J
) )
10697, 101cnmpt2nd 14876 . . . . 5  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  w )  e.  ( ( L  tX  M )  Cn  M
) )
107 hmeocnvcn 14893 . . . . . 6  |-  ( G  e.  ( K Homeo M )  ->  `' G  e.  ( M  Cn  K
) )
1089, 107syl 14 . . . . 5  |-  ( ph  ->  `' G  e.  ( M  Cn  K ) )
10997, 101, 106, 108cnmpt21f 14879 . . . 4  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( `' G `  w ) )  e.  ( ( L  tX  M )  Cn  K
) )
11097, 101, 105, 109cnmpt2t 14880 . . 3  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  <. ( `' F `  z ) ,  ( `' G `  w )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) )
11193, 110eqeltrd 2284 . 2  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) )
112 ishmeo 14891 . 2  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) )  <->  ( (
x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) ) )
11321, 111, 112sylanbrc 417 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   <.cop 3646   U.cuni 3864    |-> cmpt 4121    X. cxp 4691   `'ccnv 4692   -->wf 5286   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   1stc1st 6247   2ndc2nd 6248   Topctop 14584  TopOnctopon 14597    Cn ccn 14772    tX ctx 14839   Homeochmeo 14887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-topgen 13207  df-top 14585  df-topon 14598  df-bases 14630  df-cn 14775  df-tx 14840  df-hmeo 14888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator