ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txhmeo Unicode version

Theorem txhmeo 13822
Description: Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
txhmeo.1  |-  X  = 
U. J
txhmeo.2  |-  Y  = 
U. K
txhmeo.3  |-  ( ph  ->  F  e.  ( J
Homeo L ) )
txhmeo.4  |-  ( ph  ->  G  e.  ( K
Homeo M ) )
Assertion
Ref Expression
txhmeo  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    ph, x, y   
x, G, y    x, L, y    x, X, y   
x, Y, y    x, M, y

Proof of Theorem txhmeo
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txhmeo.3 . . . . . 6  |-  ( ph  ->  F  e.  ( J
Homeo L ) )
2 hmeocn 13808 . . . . . 6  |-  ( F  e.  ( J Homeo L )  ->  F  e.  ( J  Cn  L
) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( J  Cn  L ) )
4 cntop1 13704 . . . . 5  |-  ( F  e.  ( J  Cn  L )  ->  J  e.  Top )
53, 4syl 14 . . . 4  |-  ( ph  ->  J  e.  Top )
6 txhmeo.1 . . . . 5  |-  X  = 
U. J
76toptopon 13521 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
85, 7sylib 122 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 txhmeo.4 . . . . . 6  |-  ( ph  ->  G  e.  ( K
Homeo M ) )
10 hmeocn 13808 . . . . . 6  |-  ( G  e.  ( K Homeo M )  ->  G  e.  ( K  Cn  M
) )
119, 10syl 14 . . . . 5  |-  ( ph  ->  G  e.  ( K  Cn  M ) )
12 cntop1 13704 . . . . 5  |-  ( G  e.  ( K  Cn  M )  ->  K  e.  Top )
1311, 12syl 14 . . . 4  |-  ( ph  ->  K  e.  Top )
14 txhmeo.2 . . . . 5  |-  Y  = 
U. K
1514toptopon 13521 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
1613, 15sylib 122 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
178, 16cnmpt1st 13791 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K
)  Cn  J ) )
188, 16, 17, 3cnmpt21f 13795 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( F `  x
) )  e.  ( ( J  tX  K
)  Cn  L ) )
198, 16cnmpt2nd 13792 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K
)  Cn  K ) )
208, 16, 19, 11cnmpt21f 13795 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( G `  y
) )  e.  ( ( J  tX  K
)  Cn  M ) )
218, 16, 18, 20cnmpt2t 13796 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) ) )
22 vex 2741 . . . . . . . . . . 11  |-  x  e. 
_V
23 vex 2741 . . . . . . . . . . 11  |-  y  e. 
_V
2422, 23op1std 6149 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( 1st `  u
)  =  x )
2524fveq2d 5520 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( F `  ( 1st `  u ) )  =  ( F `
 x ) )
2622, 23op2ndd 6150 . . . . . . . . . 10  |-  ( u  =  <. x ,  y
>.  ->  ( 2nd `  u
)  =  y )
2726fveq2d 5520 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( G `  ( 2nd `  u ) )  =  ( G `
 y ) )
2825, 27opeq12d 3787 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >.  =  <. ( F `  x ) ,  ( G `  y ) >. )
2928mpompt 5967 . . . . . . 7  |-  ( u  e.  ( X  X.  Y )  |->  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)
3029eqcomi 2181 . . . . . 6  |-  ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  ( u  e.  ( X  X.  Y
)  |->  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >. )
31 eqid 2177 . . . . . . . . . 10  |-  U. L  =  U. L
326, 31cnf 13707 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  L )  ->  F : X --> U. L )
333, 32syl 14 . . . . . . . 8  |-  ( ph  ->  F : X --> U. L
)
34 xp1st 6166 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  ( 1st `  u )  e.  X )
35 ffvelcdm 5650 . . . . . . . 8  |-  ( ( F : X --> U. L  /\  ( 1st `  u
)  e.  X )  ->  ( F `  ( 1st `  u ) )  e.  U. L
)
3633, 34, 35syl2an 289 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  ( F `  ( 1st `  u ) )  e. 
U. L )
37 eqid 2177 . . . . . . . . . 10  |-  U. M  =  U. M
3814, 37cnf 13707 . . . . . . . . 9  |-  ( G  e.  ( K  Cn  M )  ->  G : Y --> U. M )
3911, 38syl 14 . . . . . . . 8  |-  ( ph  ->  G : Y --> U. M
)
40 xp2nd 6167 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  ( 2nd `  u )  e.  Y )
41 ffvelcdm 5650 . . . . . . . 8  |-  ( ( G : Y --> U. M  /\  ( 2nd `  u
)  e.  Y )  ->  ( G `  ( 2nd `  u ) )  e.  U. M
)
4239, 40, 41syl2an 289 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  ( G `  ( 2nd `  u ) )  e. 
U. M )
4336, 42opelxpd 4660 . . . . . 6  |-  ( (
ph  /\  u  e.  ( X  X.  Y
) )  ->  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>.  e.  ( U. L  X.  U. M ) )
446, 31hmeof1o 13812 . . . . . . . . . 10  |-  ( F  e.  ( J Homeo L )  ->  F : X
-1-1-onto-> U. L )
451, 44syl 14 . . . . . . . . 9  |-  ( ph  ->  F : X -1-1-onto-> U. L
)
46 f1ocnv 5475 . . . . . . . . 9  |-  ( F : X -1-1-onto-> U. L  ->  `' F : U. L -1-1-onto-> X )
47 f1of 5462 . . . . . . . . 9  |-  ( `' F : U. L -1-1-onto-> X  ->  `' F : U. L --> X )
4845, 46, 473syl 17 . . . . . . . 8  |-  ( ph  ->  `' F : U. L --> X )
49 xp1st 6166 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( 1st `  v
)  e.  U. L
)
50 ffvelcdm 5650 . . . . . . . 8  |-  ( ( `' F : U. L --> X  /\  ( 1st `  v
)  e.  U. L
)  ->  ( `' F `  ( 1st `  v ) )  e.  X )
5148, 49, 50syl2an 289 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  -> 
( `' F `  ( 1st `  v ) )  e.  X )
5214, 37hmeof1o 13812 . . . . . . . . . 10  |-  ( G  e.  ( K Homeo M )  ->  G : Y
-1-1-onto-> U. M )
539, 52syl 14 . . . . . . . . 9  |-  ( ph  ->  G : Y -1-1-onto-> U. M
)
54 f1ocnv 5475 . . . . . . . . 9  |-  ( G : Y -1-1-onto-> U. M  ->  `' G : U. M -1-1-onto-> Y )
55 f1of 5462 . . . . . . . . 9  |-  ( `' G : U. M -1-1-onto-> Y  ->  `' G : U. M --> Y )
5653, 54, 553syl 17 . . . . . . . 8  |-  ( ph  ->  `' G : U. M --> Y )
57 xp2nd 6167 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( 2nd `  v
)  e.  U. M
)
58 ffvelcdm 5650 . . . . . . . 8  |-  ( ( `' G : U. M --> Y  /\  ( 2nd `  v
)  e.  U. M
)  ->  ( `' G `  ( 2nd `  v ) )  e.  Y )
5956, 57, 58syl2an 289 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  -> 
( `' G `  ( 2nd `  v ) )  e.  Y )
6051, 59opelxpd 4660 . . . . . 6  |-  ( (
ph  /\  v  e.  ( U. L  X.  U. M ) )  ->  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  e.  ( X  X.  Y
) )
6145adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  F : X -1-1-onto-> U. L )
6234ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 1st `  u
)  e.  X )
6349ad2antll 491 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 1st `  v
)  e.  U. L
)
64 f1ocnvfvb 5781 . . . . . . . . . 10  |-  ( ( F : X -1-1-onto-> U. L  /\  ( 1st `  u
)  e.  X  /\  ( 1st `  v )  e.  U. L )  ->  ( ( F `
 ( 1st `  u
) )  =  ( 1st `  v )  <-> 
( `' F `  ( 1st `  v ) )  =  ( 1st `  u ) ) )
6561, 62, 63, 64syl3anc 1238 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( F `
 ( 1st `  u
) )  =  ( 1st `  v )  <-> 
( `' F `  ( 1st `  v ) )  =  ( 1st `  u ) ) )
66 eqcom 2179 . . . . . . . . 9  |-  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  <->  ( F `  ( 1st `  u ) )  =  ( 1st `  v ) )
67 eqcom 2179 . . . . . . . . 9  |-  ( ( 1st `  u )  =  ( `' F `  ( 1st `  v
) )  <->  ( `' F `  ( 1st `  v ) )  =  ( 1st `  u
) )
6865, 66, 673bitr4g 223 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  <->  ( 1st `  u )  =  ( `' F `  ( 1st `  v ) ) ) )
6953adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  G : Y -1-1-onto-> U. M )
7040ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 2nd `  u
)  e.  Y )
7157ad2antll 491 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( 2nd `  v
)  e.  U. M
)
72 f1ocnvfvb 5781 . . . . . . . . . 10  |-  ( ( G : Y -1-1-onto-> U. M  /\  ( 2nd `  u
)  e.  Y  /\  ( 2nd `  v )  e.  U. M )  ->  ( ( G `
 ( 2nd `  u
) )  =  ( 2nd `  v )  <-> 
( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u ) ) )
7369, 70, 71, 72syl3anc 1238 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( G `
 ( 2nd `  u
) )  =  ( 2nd `  v )  <-> 
( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u ) ) )
74 eqcom 2179 . . . . . . . . 9  |-  ( ( 2nd `  v )  =  ( G `  ( 2nd `  u ) )  <->  ( G `  ( 2nd `  u ) )  =  ( 2nd `  v ) )
75 eqcom 2179 . . . . . . . . 9  |-  ( ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) )  <->  ( `' G `  ( 2nd `  v ) )  =  ( 2nd `  u
) )
7673, 74, 753bitr4g 223 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( 2nd `  v )  =  ( G `  ( 2nd `  u ) )  <->  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v ) ) ) )
7768, 76anbi12d 473 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) )  <-> 
( ( 1st `  u
)  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
78 eqop 6178 . . . . . . . 8  |-  ( v  e.  ( U. L  X.  U. M )  -> 
( v  =  <. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) )
>. 
<->  ( ( 1st `  v
)  =  ( F `
 ( 1st `  u
) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) ) ) )
7978ad2antll 491 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( v  = 
<. ( F `  ( 1st `  u ) ) ,  ( G `  ( 2nd `  u ) ) >.  <->  ( ( 1st `  v )  =  ( F `  ( 1st `  u ) )  /\  ( 2nd `  v )  =  ( G `  ( 2nd `  u ) ) ) ) )
80 eqop 6178 . . . . . . . 8  |-  ( u  e.  ( X  X.  Y )  ->  (
u  =  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  ( ( 1st `  u )  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
8180ad2antrl 490 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( u  = 
<. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  ( ( 1st `  u
)  =  ( `' F `  ( 1st `  v ) )  /\  ( 2nd `  u )  =  ( `' G `  ( 2nd `  v
) ) ) ) )
8277, 79, 813bitr4rd 221 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ( X  X.  Y
)  /\  v  e.  ( U. L  X.  U. M ) ) )  ->  ( u  = 
<. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.  <->  v  =  <. ( F `  ( 1st `  u ) ) ,  ( G `
 ( 2nd `  u
) ) >. )
)
8330, 43, 60, 82f1ocnv2d 6075 . . . . 5  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. ) : ( X  X.  Y ) -1-1-onto-> ( U. L  X.  U. M )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  ( v  e.  ( U. L  X.  U. M )  |->  <. ( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >. ) ) )
8483simprd 114 . . . 4  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  =  (
v  e.  ( U. L  X.  U. M ) 
|->  <. ( `' F `  ( 1st `  v
) ) ,  ( `' G `  ( 2nd `  v ) ) >.
) )
85 vex 2741 . . . . . . . 8  |-  z  e. 
_V
86 vex 2741 . . . . . . . 8  |-  w  e. 
_V
8785, 86op1std 6149 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( 1st `  v
)  =  z )
8887fveq2d 5520 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( `' F `  ( 1st `  v
) )  =  ( `' F `  z ) )
8985, 86op2ndd 6150 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( 2nd `  v
)  =  w )
9089fveq2d 5520 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( `' G `  ( 2nd `  v
) )  =  ( `' G `  w ) )
9188, 90opeq12d 3787 . . . . 5  |-  ( v  =  <. z ,  w >.  ->  <. ( `' F `  ( 1st `  v
) ) ,  ( `' G `  ( 2nd `  v ) ) >.  =  <. ( `' F `  z ) ,  ( `' G `  w )
>. )
9291mpompt 5967 . . . 4  |-  ( v  e.  ( U. L  X.  U. M )  |->  <.
( `' F `  ( 1st `  v ) ) ,  ( `' G `  ( 2nd `  v ) ) >.
)  =  ( z  e.  U. L ,  w  e.  U. M  |->  <.
( `' F `  z ) ,  ( `' G `  w )
>. )
9384, 92eqtrdi 2226 . . 3  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  =  (
z  e.  U. L ,  w  e.  U. M  |-> 
<. ( `' F `  z ) ,  ( `' G `  w )
>. ) )
94 cntop2 13705 . . . . . 6  |-  ( F  e.  ( J  Cn  L )  ->  L  e.  Top )
953, 94syl 14 . . . . 5  |-  ( ph  ->  L  e.  Top )
9631toptopon 13521 . . . . 5  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
9795, 96sylib 122 . . . 4  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
98 cntop2 13705 . . . . . 6  |-  ( G  e.  ( K  Cn  M )  ->  M  e.  Top )
9911, 98syl 14 . . . . 5  |-  ( ph  ->  M  e.  Top )
10037toptopon 13521 . . . . 5  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
10199, 100sylib 122 . . . 4  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
10297, 101cnmpt1st 13791 . . . . 5  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  z )  e.  ( ( L  tX  M )  Cn  L
) )
103 hmeocnvcn 13809 . . . . . 6  |-  ( F  e.  ( J Homeo L )  ->  `' F  e.  ( L  Cn  J
) )
1041, 103syl 14 . . . . 5  |-  ( ph  ->  `' F  e.  ( L  Cn  J ) )
10597, 101, 102, 104cnmpt21f 13795 . . . 4  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( `' F `  z ) )  e.  ( ( L  tX  M )  Cn  J
) )
10697, 101cnmpt2nd 13792 . . . . 5  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  w )  e.  ( ( L  tX  M )  Cn  M
) )
107 hmeocnvcn 13809 . . . . . 6  |-  ( G  e.  ( K Homeo M )  ->  `' G  e.  ( M  Cn  K
) )
1089, 107syl 14 . . . . 5  |-  ( ph  ->  `' G  e.  ( M  Cn  K ) )
10997, 101, 106, 108cnmpt21f 13795 . . . 4  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( `' G `  w ) )  e.  ( ( L  tX  M )  Cn  K
) )
11097, 101, 105, 109cnmpt2t 13796 . . 3  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  <. ( `' F `  z ) ,  ( `' G `  w )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) )
11193, 110eqeltrd 2254 . 2  |-  ( ph  ->  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) )
112 ishmeo 13807 . 2  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) )  <->  ( (
x  e.  X , 
y  e.  Y  |->  <.
( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. ( F `  x ) ,  ( G `  y )
>. )  e.  (
( L  tX  M
)  Cn  ( J 
tX  K ) ) ) )
11321, 111, 112sylanbrc 417 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( F `  x
) ,  ( G `
 y ) >.
)  e.  ( ( J  tX  K )
Homeo ( L  tX  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   <.cop 3596   U.cuni 3810    |-> cmpt 4065    X. cxp 4625   `'ccnv 4626   -->wf 5213   -1-1-onto->wf1o 5216   ` cfv 5217  (class class class)co 5875    e. cmpo 5877   1stc1st 6139   2ndc2nd 6140   Topctop 13500  TopOnctopon 13513    Cn ccn 13688    tX ctx 13755   Homeochmeo 13803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-topgen 12709  df-top 13501  df-topon 13514  df-bases 13546  df-cn 13691  df-tx 13756  df-hmeo 13804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator