| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txhmeo | Unicode version | ||
| Description: Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txhmeo.1 |
|
| txhmeo.2 |
|
| txhmeo.3 |
|
| txhmeo.4 |
|
| Ref | Expression |
|---|---|
| txhmeo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txhmeo.3 |
. . . . . 6
| |
| 2 | hmeocn 14810 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | cntop1 14706 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | txhmeo.1 |
. . . . 5
| |
| 7 | 6 | toptopon 14523 |
. . . 4
|
| 8 | 5, 7 | sylib 122 |
. . 3
|
| 9 | txhmeo.4 |
. . . . . 6
| |
| 10 | hmeocn 14810 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | cntop1 14706 |
. . . . 5
| |
| 13 | 11, 12 | syl 14 |
. . . 4
|
| 14 | txhmeo.2 |
. . . . 5
| |
| 15 | 14 | toptopon 14523 |
. . . 4
|
| 16 | 13, 15 | sylib 122 |
. . 3
|
| 17 | 8, 16 | cnmpt1st 14793 |
. . . 4
|
| 18 | 8, 16, 17, 3 | cnmpt21f 14797 |
. . 3
|
| 19 | 8, 16 | cnmpt2nd 14794 |
. . . 4
|
| 20 | 8, 16, 19, 11 | cnmpt21f 14797 |
. . 3
|
| 21 | 8, 16, 18, 20 | cnmpt2t 14798 |
. 2
|
| 22 | vex 2775 |
. . . . . . . . . . 11
| |
| 23 | vex 2775 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | op1std 6236 |
. . . . . . . . . 10
|
| 25 | 24 | fveq2d 5582 |
. . . . . . . . 9
|
| 26 | 22, 23 | op2ndd 6237 |
. . . . . . . . . 10
|
| 27 | 26 | fveq2d 5582 |
. . . . . . . . 9
|
| 28 | 25, 27 | opeq12d 3827 |
. . . . . . . 8
|
| 29 | 28 | mpompt 6039 |
. . . . . . 7
|
| 30 | 29 | eqcomi 2209 |
. . . . . 6
|
| 31 | eqid 2205 |
. . . . . . . . . 10
| |
| 32 | 6, 31 | cnf 14709 |
. . . . . . . . 9
|
| 33 | 3, 32 | syl 14 |
. . . . . . . 8
|
| 34 | xp1st 6253 |
. . . . . . . 8
| |
| 35 | ffvelcdm 5715 |
. . . . . . . 8
| |
| 36 | 33, 34, 35 | syl2an 289 |
. . . . . . 7
|
| 37 | eqid 2205 |
. . . . . . . . . 10
| |
| 38 | 14, 37 | cnf 14709 |
. . . . . . . . 9
|
| 39 | 11, 38 | syl 14 |
. . . . . . . 8
|
| 40 | xp2nd 6254 |
. . . . . . . 8
| |
| 41 | ffvelcdm 5715 |
. . . . . . . 8
| |
| 42 | 39, 40, 41 | syl2an 289 |
. . . . . . 7
|
| 43 | 36, 42 | opelxpd 4709 |
. . . . . 6
|
| 44 | 6, 31 | hmeof1o 14814 |
. . . . . . . . . 10
|
| 45 | 1, 44 | syl 14 |
. . . . . . . . 9
|
| 46 | f1ocnv 5537 |
. . . . . . . . 9
| |
| 47 | f1of 5524 |
. . . . . . . . 9
| |
| 48 | 45, 46, 47 | 3syl 17 |
. . . . . . . 8
|
| 49 | xp1st 6253 |
. . . . . . . 8
| |
| 50 | ffvelcdm 5715 |
. . . . . . . 8
| |
| 51 | 48, 49, 50 | syl2an 289 |
. . . . . . 7
|
| 52 | 14, 37 | hmeof1o 14814 |
. . . . . . . . . 10
|
| 53 | 9, 52 | syl 14 |
. . . . . . . . 9
|
| 54 | f1ocnv 5537 |
. . . . . . . . 9
| |
| 55 | f1of 5524 |
. . . . . . . . 9
| |
| 56 | 53, 54, 55 | 3syl 17 |
. . . . . . . 8
|
| 57 | xp2nd 6254 |
. . . . . . . 8
| |
| 58 | ffvelcdm 5715 |
. . . . . . . 8
| |
| 59 | 56, 57, 58 | syl2an 289 |
. . . . . . 7
|
| 60 | 51, 59 | opelxpd 4709 |
. . . . . 6
|
| 61 | 45 | adantr 276 |
. . . . . . . . . 10
|
| 62 | 34 | ad2antrl 490 |
. . . . . . . . . 10
|
| 63 | 49 | ad2antll 491 |
. . . . . . . . . 10
|
| 64 | f1ocnvfvb 5851 |
. . . . . . . . . 10
| |
| 65 | 61, 62, 63, 64 | syl3anc 1250 |
. . . . . . . . 9
|
| 66 | eqcom 2207 |
. . . . . . . . 9
| |
| 67 | eqcom 2207 |
. . . . . . . . 9
| |
| 68 | 65, 66, 67 | 3bitr4g 223 |
. . . . . . . 8
|
| 69 | 53 | adantr 276 |
. . . . . . . . . 10
|
| 70 | 40 | ad2antrl 490 |
. . . . . . . . . 10
|
| 71 | 57 | ad2antll 491 |
. . . . . . . . . 10
|
| 72 | f1ocnvfvb 5851 |
. . . . . . . . . 10
| |
| 73 | 69, 70, 71, 72 | syl3anc 1250 |
. . . . . . . . 9
|
| 74 | eqcom 2207 |
. . . . . . . . 9
| |
| 75 | eqcom 2207 |
. . . . . . . . 9
| |
| 76 | 73, 74, 75 | 3bitr4g 223 |
. . . . . . . 8
|
| 77 | 68, 76 | anbi12d 473 |
. . . . . . 7
|
| 78 | eqop 6265 |
. . . . . . . 8
| |
| 79 | 78 | ad2antll 491 |
. . . . . . 7
|
| 80 | eqop 6265 |
. . . . . . . 8
| |
| 81 | 80 | ad2antrl 490 |
. . . . . . 7
|
| 82 | 77, 79, 81 | 3bitr4rd 221 |
. . . . . 6
|
| 83 | 30, 43, 60, 82 | f1ocnv2d 6152 |
. . . . 5
|
| 84 | 83 | simprd 114 |
. . . 4
|
| 85 | vex 2775 |
. . . . . . . 8
| |
| 86 | vex 2775 |
. . . . . . . 8
| |
| 87 | 85, 86 | op1std 6236 |
. . . . . . 7
|
| 88 | 87 | fveq2d 5582 |
. . . . . 6
|
| 89 | 85, 86 | op2ndd 6237 |
. . . . . . 7
|
| 90 | 89 | fveq2d 5582 |
. . . . . 6
|
| 91 | 88, 90 | opeq12d 3827 |
. . . . 5
|
| 92 | 91 | mpompt 6039 |
. . . 4
|
| 93 | 84, 92 | eqtrdi 2254 |
. . 3
|
| 94 | cntop2 14707 |
. . . . . 6
| |
| 95 | 3, 94 | syl 14 |
. . . . 5
|
| 96 | 31 | toptopon 14523 |
. . . . 5
|
| 97 | 95, 96 | sylib 122 |
. . . 4
|
| 98 | cntop2 14707 |
. . . . . 6
| |
| 99 | 11, 98 | syl 14 |
. . . . 5
|
| 100 | 37 | toptopon 14523 |
. . . . 5
|
| 101 | 99, 100 | sylib 122 |
. . . 4
|
| 102 | 97, 101 | cnmpt1st 14793 |
. . . . 5
|
| 103 | hmeocnvcn 14811 |
. . . . . 6
| |
| 104 | 1, 103 | syl 14 |
. . . . 5
|
| 105 | 97, 101, 102, 104 | cnmpt21f 14797 |
. . . 4
|
| 106 | 97, 101 | cnmpt2nd 14794 |
. . . . 5
|
| 107 | hmeocnvcn 14811 |
. . . . . 6
| |
| 108 | 9, 107 | syl 14 |
. . . . 5
|
| 109 | 97, 101, 106, 108 | cnmpt21f 14797 |
. . . 4
|
| 110 | 97, 101, 105, 109 | cnmpt2t 14798 |
. . 3
|
| 111 | 93, 110 | eqeltrd 2282 |
. 2
|
| 112 | ishmeo 14809 |
. 2
| |
| 113 | 21, 111, 112 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-map 6739 df-topgen 13125 df-top 14503 df-topon 14516 df-bases 14548 df-cn 14693 df-tx 14758 df-hmeo 14806 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |