| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvfv | Unicode version | ||
| Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5578 |
. . 3
| |
| 2 | 1 | eqcoms 2208 |
. 2
|
| 3 | f1ocnvfv1 5848 |
. . 3
| |
| 4 | 3 | eqeq2d 2217 |
. 2
|
| 5 | 2, 4 | imbitrid 154 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 |
| This theorem is referenced by: f1ocnvfvb 5851 f1oiso2 5898 frecuzrdgtcl 10559 frecuzrdgsuc 10561 frecuzrdgfunlem 10566 frecfzennn 10573 0tonninf 10587 1tonninf 10588 seqf1oglem1 10666 seqf1oglem2 10667 sqpweven 12530 2sqpwodd 12531 mhmf1o 13335 ghmf1o 13644 012of 15967 isomninnlem 16006 iswomninnlem 16025 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |