ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv Unicode version

Theorem f1ocnvfv 5850
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
Assertion
Ref Expression
f1ocnvfv  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  C ) )

Proof of Theorem f1ocnvfv
StepHypRef Expression
1 fveq2 5578 . . 3  |-  ( D  =  ( F `  C )  ->  ( `' F `  D )  =  ( `' F `  ( F `  C
) ) )
21eqcoms 2208 . 2  |-  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  ( `' F `  ( F `  C
) ) )
3 f1ocnvfv1 5848 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
43eqeq2d 2217 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F `  D )  =  ( `' F `  ( F `
 C ) )  <-> 
( `' F `  D )  =  C ) )
52, 4imbitrid 154 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   `'ccnv 4675   -1-1-onto->wf1o 5271   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280
This theorem is referenced by:  f1ocnvfvb  5851  f1oiso2  5898  frecuzrdgtcl  10559  frecuzrdgsuc  10561  frecuzrdgfunlem  10566  frecfzennn  10573  0tonninf  10587  1tonninf  10588  seqf1oglem1  10666  seqf1oglem2  10667  sqpweven  12530  2sqpwodd  12531  mhmf1o  13335  ghmf1o  13644  012of  15967  isomninnlem  16006  iswomninnlem  16025  ismkvnnlem  16028
  Copyright terms: Public domain W3C validator