ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv Unicode version

Theorem f1ocnvfv 5783
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
Assertion
Ref Expression
f1ocnvfv  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  C ) )

Proof of Theorem f1ocnvfv
StepHypRef Expression
1 fveq2 5517 . . 3  |-  ( D  =  ( F `  C )  ->  ( `' F `  D )  =  ( `' F `  ( F `  C
) ) )
21eqcoms 2180 . 2  |-  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  ( `' F `  ( F `  C
) ) )
3 f1ocnvfv1 5781 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
43eqeq2d 2189 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F `  D )  =  ( `' F `  ( F `
 C ) )  <-> 
( `' F `  D )  =  C ) )
52, 4imbitrid 154 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   `'ccnv 4627   -1-1-onto->wf1o 5217   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  f1ocnvfvb  5784  f1oiso2  5831  frecuzrdgtcl  10415  frecuzrdgsuc  10417  frecuzrdgfunlem  10422  frecfzennn  10429  0tonninf  10442  1tonninf  10443  sqpweven  12178  2sqpwodd  12179  mhmf1o  12867  012of  14886  isomninnlem  14919  iswomninnlem  14938  ismkvnnlem  14941
  Copyright terms: Public domain W3C validator