ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv Unicode version

Theorem f1ocnvfv 5903
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
Assertion
Ref Expression
f1ocnvfv  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  C ) )

Proof of Theorem f1ocnvfv
StepHypRef Expression
1 fveq2 5627 . . 3  |-  ( D  =  ( F `  C )  ->  ( `' F `  D )  =  ( `' F `  ( F `  C
) ) )
21eqcoms 2232 . 2  |-  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  ( `' F `  ( F `  C
) ) )
3 f1ocnvfv1 5901 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
43eqeq2d 2241 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( `' F `  D )  =  ( `' F `  ( F `
 C ) )  <-> 
( `' F `  D )  =  C ) )
52, 4imbitrid 154 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `  C )  =  D  ->  ( `' F `  D )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   `'ccnv 4718   -1-1-onto->wf1o 5317   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  f1ocnvfvb  5904  f1oiso2  5951  frecuzrdgtcl  10634  frecuzrdgsuc  10636  frecuzrdgfunlem  10641  frecfzennn  10648  0tonninf  10662  1tonninf  10663  seqf1oglem1  10741  seqf1oglem2  10742  sqpweven  12697  2sqpwodd  12698  mhmf1o  13503  ghmf1o  13812  012of  16357  isomninnlem  16398  iswomninnlem  16417  ismkvnnlem  16420
  Copyright terms: Public domain W3C validator