Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ocnvfvb | GIF version |
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfvb | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 ↔ (◡𝐹‘𝐷) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnvfv 5758 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) | |
2 | 1 | 3adant3 1012 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
3 | fveq2 5496 | . . . . 5 ⊢ (𝐶 = (◡𝐹‘𝐷) → (𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷))) | |
4 | 3 | eqcoms 2173 | . . . 4 ⊢ ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷))) |
5 | f1ocnvfv2 5757 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐷)) = 𝐷) | |
6 | 5 | eqeq2d 2182 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷)) ↔ (𝐹‘𝐶) = 𝐷)) |
7 | 4, 6 | syl5ib 153 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = 𝐷)) |
8 | 7 | 3adant2 1011 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = 𝐷)) |
9 | 2, 8 | impbid 128 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 ↔ (◡𝐹‘𝐷) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ◡ccnv 4610 –1-1-onto→wf1o 5197 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: f1ofveu 5841 f1ocnvfv3 5842 seq3f1olemstep 10457 1arith2 12320 ennnfonelem1 12362 txhmeo 13113 |
Copyright terms: Public domain | W3C validator |