ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfvb GIF version

Theorem f1ocnvfvb 5771
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfvb ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfvb
StepHypRef Expression
1 f1ocnvfv 5770 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
213adant3 1017 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
3 fveq2 5507 . . . . 5 (𝐶 = (𝐹𝐷) → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
43eqcoms 2178 . . . 4 ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
5 f1ocnvfv2 5769 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → (𝐹‘(𝐹𝐷)) = 𝐷)
65eqeq2d 2187 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐶) = (𝐹‘(𝐹𝐷)) ↔ (𝐹𝐶) = 𝐷))
74, 6syl5ib 154 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
873adant2 1016 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
92, 8impbid 129 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2146  ccnv 4619  1-1-ontowf1o 5207  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216
This theorem is referenced by:  f1ofveu  5853  f1ocnvfv3  5854  seq3f1olemstep  10469  1arith2  12331  ennnfonelem1  12373  txhmeo  13370
  Copyright terms: Public domain W3C validator