ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfvb GIF version

Theorem f1ocnvfvb 5827
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfvb ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfvb
StepHypRef Expression
1 f1ocnvfv 5826 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
213adant3 1019 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
3 fveq2 5558 . . . . 5 (𝐶 = (𝐹𝐷) → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
43eqcoms 2199 . . . 4 ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
5 f1ocnvfv2 5825 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → (𝐹‘(𝐹𝐷)) = 𝐷)
65eqeq2d 2208 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐶) = (𝐹‘(𝐹𝐷)) ↔ (𝐹𝐶) = 𝐷))
74, 6imbitrid 154 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
873adant2 1018 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
92, 8impbid 129 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  ccnv 4662  1-1-ontowf1o 5257  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by:  f1ofveu  5910  f1ocnvfv3  5911  seq3f1olemstep  10606  1arith2  12537  ennnfonelem1  12624  txhmeo  14555
  Copyright terms: Public domain W3C validator