ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfvb GIF version

Theorem f1ocnvfvb 5819
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfvb ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfvb
StepHypRef Expression
1 f1ocnvfv 5818 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
213adant3 1019 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
3 fveq2 5550 . . . . 5 (𝐶 = (𝐹𝐷) → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
43eqcoms 2196 . . . 4 ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
5 f1ocnvfv2 5817 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → (𝐹‘(𝐹𝐷)) = 𝐷)
65eqeq2d 2205 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐶) = (𝐹‘(𝐹𝐷)) ↔ (𝐹𝐶) = 𝐷))
74, 6imbitrid 154 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
873adant2 1018 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
92, 8impbid 129 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  ccnv 4656  1-1-ontowf1o 5249  cfv 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4322  df-xp 4663  df-rel 4664  df-cnv 4665  df-co 4666  df-dm 4667  df-rn 4668  df-res 4669  df-ima 4670  df-iota 5211  df-fun 5252  df-fn 5253  df-f 5254  df-f1 5255  df-fo 5256  df-f1o 5257  df-fv 5258
This theorem is referenced by:  f1ofveu  5902  f1ocnvfv3  5903  seq3f1olemstep  10579  1arith2  12500  ennnfonelem1  12558  txhmeo  14468
  Copyright terms: Public domain W3C validator