Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ocnvfvb | GIF version |
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfvb | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 ↔ (◡𝐹‘𝐷) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnvfv 5747 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) | |
2 | 1 | 3adant3 1007 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
3 | fveq2 5486 | . . . . 5 ⊢ (𝐶 = (◡𝐹‘𝐷) → (𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷))) | |
4 | 3 | eqcoms 2168 | . . . 4 ⊢ ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷))) |
5 | f1ocnvfv2 5746 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐷)) = 𝐷) | |
6 | 5 | eqeq2d 2177 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷)) ↔ (𝐹‘𝐶) = 𝐷)) |
7 | 4, 6 | syl5ib 153 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = 𝐷)) |
8 | 7 | 3adant2 1006 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = 𝐷)) |
9 | 2, 8 | impbid 128 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 ↔ (◡𝐹‘𝐷) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ◡ccnv 4603 –1-1-onto→wf1o 5187 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: f1ofveu 5830 f1ocnvfv3 5831 seq3f1olemstep 10436 1arith2 12298 ennnfonelem1 12340 txhmeo 12959 |
Copyright terms: Public domain | W3C validator |