| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvfv2 | Unicode version | ||
| Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv2 5551 |
. . . 4
| |
| 2 | 1 | fveq1d 5580 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | f1ocnv 5537 |
. . . 4
| |
| 5 | f1of 5524 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fvco3 5652 |
. . 3
| |
| 8 | 6, 7 | sylan 283 |
. 2
|
| 9 | fvresi 5779 |
. . 3
| |
| 10 | 9 | adantl 277 |
. 2
|
| 11 | 3, 8, 10 | 3eqtr3d 2246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 |
| This theorem is referenced by: f1ocnvfvb 5851 isocnv 5882 f1oiso2 5898 ordiso2 7139 enomnilem 7242 enmkvlem 7265 enwomnilem 7273 frecuzrdglem 10558 frecuzrdgsuc 10561 frecuzrdgdomlem 10564 frecuzrdgsuctlem 10570 frecfzennn 10573 iseqf1olemkle 10644 iseqf1olemklt 10645 iseqf1olemnab 10648 seq3f1olemqsumkj 10658 seqf1oglem1 10666 seqf1oglem2 10667 hashfz1 10930 seq3coll 10989 summodclem3 11724 summodclem2a 11725 prodmodclem3 11919 prodmodclem2a 11920 nninfctlemfo 12394 sqpweven 12530 2sqpwodd 12531 phimullem 12580 eulerthlemth 12587 ennnfonelemkh 12816 ennnfonelemhf1o 12817 ennnfonelemex 12818 ennnfonelemnn0 12826 ctinfomlemom 12831 ctiunctlemfo 12843 mhmf1o 13335 ghmf1o 13644 gsumfzreidx 13706 reeflog 15368 isomninnlem 16006 iswomninnlem 16025 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |