ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv2 Unicode version

Theorem f1ocnvfv2 5902
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )

Proof of Theorem f1ocnvfv2
StepHypRef Expression
1 f1ococnv2 5599 . . . 4  |-  ( F : A -1-1-onto-> B  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
21fveq1d 5629 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( ( F  o.  `' F
) `  C )  =  ( (  _I  |`  B ) `  C
) )
32adantr 276 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( (  _I  |`  B ) `  C ) )
4 f1ocnv 5585 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
5 f1of 5572 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
64, 5syl 14 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' F : B --> A )
7 fvco3 5705 . . 3  |-  ( ( `' F : B --> A  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( F `
 ( `' F `  C ) ) )
86, 7sylan 283 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( F `
 ( `' F `  C ) ) )
9 fvresi 5832 . . 3  |-  ( C  e.  B  ->  (
(  _I  |`  B ) `
 C )  =  C )
109adantl 277 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( (  _I  |`  B ) `
 C )  =  C )
113, 8, 103eqtr3d 2270 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    _I cid 4379   `'ccnv 4718    |` cres 4721    o. ccom 4723   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  f1ocnvfvb  5904  isocnv  5935  f1oiso2  5951  ordiso2  7202  enomnilem  7305  enmkvlem  7328  enwomnilem  7336  frecuzrdglem  10633  frecuzrdgsuc  10636  frecuzrdgdomlem  10639  frecuzrdgsuctlem  10645  frecfzennn  10648  iseqf1olemkle  10719  iseqf1olemklt  10720  iseqf1olemnab  10723  seq3f1olemqsumkj  10733  seqf1oglem1  10741  seqf1oglem2  10742  hashfz1  11005  seq3coll  11064  summodclem3  11891  summodclem2a  11892  prodmodclem3  12086  prodmodclem2a  12087  nninfctlemfo  12561  sqpweven  12697  2sqpwodd  12698  phimullem  12747  eulerthlemth  12754  ennnfonelemkh  12983  ennnfonelemhf1o  12984  ennnfonelemex  12985  ennnfonelemnn0  12993  ctinfomlemom  12998  ctiunctlemfo  13010  mhmf1o  13503  ghmf1o  13812  gsumfzreidx  13874  reeflog  15537  isomninnlem  16398  iswomninnlem  16417  ismkvnnlem  16420
  Copyright terms: Public domain W3C validator