| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvfv2 | Unicode version | ||
| Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv2 5549 |
. . . 4
| |
| 2 | 1 | fveq1d 5578 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | f1ocnv 5535 |
. . . 4
| |
| 5 | f1of 5522 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fvco3 5650 |
. . 3
| |
| 8 | 6, 7 | sylan 283 |
. 2
|
| 9 | fvresi 5777 |
. . 3
| |
| 10 | 9 | adantl 277 |
. 2
|
| 11 | 3, 8, 10 | 3eqtr3d 2246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: f1ocnvfvb 5849 isocnv 5880 f1oiso2 5896 ordiso2 7137 enomnilem 7240 enmkvlem 7263 enwomnilem 7271 frecuzrdglem 10556 frecuzrdgsuc 10559 frecuzrdgdomlem 10562 frecuzrdgsuctlem 10568 frecfzennn 10571 iseqf1olemkle 10642 iseqf1olemklt 10643 iseqf1olemnab 10646 seq3f1olemqsumkj 10656 seqf1oglem1 10664 seqf1oglem2 10665 hashfz1 10928 seq3coll 10987 summodclem3 11691 summodclem2a 11692 prodmodclem3 11886 prodmodclem2a 11887 nninfctlemfo 12361 sqpweven 12497 2sqpwodd 12498 phimullem 12547 eulerthlemth 12554 ennnfonelemkh 12783 ennnfonelemhf1o 12784 ennnfonelemex 12785 ennnfonelemnn0 12793 ctinfomlemom 12798 ctiunctlemfo 12810 mhmf1o 13302 ghmf1o 13611 gsumfzreidx 13673 reeflog 15335 isomninnlem 15969 iswomninnlem 15988 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |