Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ocnvfv2 | Unicode version |
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv2 5459 | . . . 4 | |
2 | 1 | fveq1d 5488 | . . 3 |
3 | 2 | adantr 274 | . 2 |
4 | f1ocnv 5445 | . . . 4 | |
5 | f1of 5432 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | fvco3 5557 | . . 3 | |
8 | 6, 7 | sylan 281 | . 2 |
9 | fvresi 5678 | . . 3 | |
10 | 9 | adantl 275 | . 2 |
11 | 3, 8, 10 | 3eqtr3d 2206 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cid 4266 ccnv 4603 cres 4606 ccom 4608 wf 5184 wf1o 5187 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: f1ocnvfvb 5748 isocnv 5779 f1oiso2 5795 ordiso2 7000 enomnilem 7102 enmkvlem 7125 enwomnilem 7133 frecuzrdglem 10346 frecuzrdgsuc 10349 frecuzrdgdomlem 10352 frecuzrdgsuctlem 10358 frecfzennn 10361 iseqf1olemkle 10419 iseqf1olemklt 10420 iseqf1olemnab 10423 seq3f1olemqsumkj 10433 hashfz1 10696 seq3coll 10755 summodclem3 11321 summodclem2a 11322 prodmodclem3 11516 prodmodclem2a 11517 sqpweven 12107 2sqpwodd 12108 phimullem 12157 eulerthlemth 12164 ennnfonelemkh 12345 ennnfonelemhf1o 12346 ennnfonelemex 12347 ennnfonelemnn0 12355 ctinfomlemom 12360 ctiunctlemfo 12372 reeflog 13424 isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |