ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv2 Unicode version

Theorem f1ocnvfv2 5849
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )

Proof of Theorem f1ocnvfv2
StepHypRef Expression
1 f1ococnv2 5551 . . . 4  |-  ( F : A -1-1-onto-> B  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
21fveq1d 5580 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( ( F  o.  `' F
) `  C )  =  ( (  _I  |`  B ) `  C
) )
32adantr 276 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( (  _I  |`  B ) `  C ) )
4 f1ocnv 5537 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
5 f1of 5524 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
64, 5syl 14 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' F : B --> A )
7 fvco3 5652 . . 3  |-  ( ( `' F : B --> A  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( F `
 ( `' F `  C ) ) )
86, 7sylan 283 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( F `
 ( `' F `  C ) ) )
9 fvresi 5779 . . 3  |-  ( C  e.  B  ->  (
(  _I  |`  B ) `
 C )  =  C )
109adantl 277 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( (  _I  |`  B ) `
 C )  =  C )
113, 8, 103eqtr3d 2246 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    _I cid 4336   `'ccnv 4675    |` cres 4678    o. ccom 4680   -->wf 5268   -1-1-onto->wf1o 5271   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280
This theorem is referenced by:  f1ocnvfvb  5851  isocnv  5882  f1oiso2  5898  ordiso2  7139  enomnilem  7242  enmkvlem  7265  enwomnilem  7273  frecuzrdglem  10558  frecuzrdgsuc  10561  frecuzrdgdomlem  10564  frecuzrdgsuctlem  10570  frecfzennn  10573  iseqf1olemkle  10644  iseqf1olemklt  10645  iseqf1olemnab  10648  seq3f1olemqsumkj  10658  seqf1oglem1  10666  seqf1oglem2  10667  hashfz1  10930  seq3coll  10989  summodclem3  11724  summodclem2a  11725  prodmodclem3  11919  prodmodclem2a  11920  nninfctlemfo  12394  sqpweven  12530  2sqpwodd  12531  phimullem  12580  eulerthlemth  12587  ennnfonelemkh  12816  ennnfonelemhf1o  12817  ennnfonelemex  12818  ennnfonelemnn0  12826  ctinfomlemom  12831  ctiunctlemfo  12843  mhmf1o  13335  ghmf1o  13644  gsumfzreidx  13706  reeflog  15368  isomninnlem  16006  iswomninnlem  16025  ismkvnnlem  16028
  Copyright terms: Public domain W3C validator