ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv2 Unicode version

Theorem f1ocnvfv2 5778
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )

Proof of Theorem f1ocnvfv2
StepHypRef Expression
1 f1ococnv2 5488 . . . 4  |-  ( F : A -1-1-onto-> B  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
21fveq1d 5517 . . 3  |-  ( F : A -1-1-onto-> B  ->  ( ( F  o.  `' F
) `  C )  =  ( (  _I  |`  B ) `  C
) )
32adantr 276 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( (  _I  |`  B ) `  C ) )
4 f1ocnv 5474 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
5 f1of 5461 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
64, 5syl 14 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' F : B --> A )
7 fvco3 5587 . . 3  |-  ( ( `' F : B --> A  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( F `
 ( `' F `  C ) ) )
86, 7sylan 283 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( ( F  o.  `' F ) `  C
)  =  ( F `
 ( `' F `  C ) ) )
9 fvresi 5709 . . 3  |-  ( C  e.  B  ->  (
(  _I  |`  B ) `
 C )  =  C )
109adantl 277 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( (  _I  |`  B ) `
 C )  =  C )
113, 8, 103eqtr3d 2218 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    _I cid 4288   `'ccnv 4625    |` cres 4628    o. ccom 4630   -->wf 5212   -1-1-onto->wf1o 5215   ` cfv 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224
This theorem is referenced by:  f1ocnvfvb  5780  isocnv  5811  f1oiso2  5827  ordiso2  7033  enomnilem  7135  enmkvlem  7158  enwomnilem  7166  frecuzrdglem  10410  frecuzrdgsuc  10413  frecuzrdgdomlem  10416  frecuzrdgsuctlem  10422  frecfzennn  10425  iseqf1olemkle  10483  iseqf1olemklt  10484  iseqf1olemnab  10487  seq3f1olemqsumkj  10497  hashfz1  10762  seq3coll  10821  summodclem3  11387  summodclem2a  11388  prodmodclem3  11582  prodmodclem2a  11583  sqpweven  12174  2sqpwodd  12175  phimullem  12224  eulerthlemth  12231  ennnfonelemkh  12412  ennnfonelemhf1o  12413  ennnfonelemex  12414  ennnfonelemnn0  12422  ctinfomlemom  12427  ctiunctlemfo  12439  mhmf1o  12860  reeflog  14254  isomninnlem  14748  iswomninnlem  14767  ismkvnnlem  14770
  Copyright terms: Public domain W3C validator