| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvfv2 | Unicode version | ||
| Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv2 5571 |
. . . 4
| |
| 2 | 1 | fveq1d 5601 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | f1ocnv 5557 |
. . . 4
| |
| 5 | f1of 5544 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fvco3 5673 |
. . 3
| |
| 8 | 6, 7 | sylan 283 |
. 2
|
| 9 | fvresi 5800 |
. . 3
| |
| 10 | 9 | adantl 277 |
. 2
|
| 11 | 3, 8, 10 | 3eqtr3d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: f1ocnvfvb 5872 isocnv 5903 f1oiso2 5919 ordiso2 7163 enomnilem 7266 enmkvlem 7289 enwomnilem 7297 frecuzrdglem 10593 frecuzrdgsuc 10596 frecuzrdgdomlem 10599 frecuzrdgsuctlem 10605 frecfzennn 10608 iseqf1olemkle 10679 iseqf1olemklt 10680 iseqf1olemnab 10683 seq3f1olemqsumkj 10693 seqf1oglem1 10701 seqf1oglem2 10702 hashfz1 10965 seq3coll 11024 summodclem3 11806 summodclem2a 11807 prodmodclem3 12001 prodmodclem2a 12002 nninfctlemfo 12476 sqpweven 12612 2sqpwodd 12613 phimullem 12662 eulerthlemth 12669 ennnfonelemkh 12898 ennnfonelemhf1o 12899 ennnfonelemex 12900 ennnfonelemnn0 12908 ctinfomlemom 12913 ctiunctlemfo 12925 mhmf1o 13417 ghmf1o 13726 gsumfzreidx 13788 reeflog 15450 isomninnlem 16171 iswomninnlem 16190 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |