| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvfv2 | Unicode version | ||
| Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv2 5599 |
. . . 4
| |
| 2 | 1 | fveq1d 5629 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | f1ocnv 5585 |
. . . 4
| |
| 5 | f1of 5572 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fvco3 5705 |
. . 3
| |
| 8 | 6, 7 | sylan 283 |
. 2
|
| 9 | fvresi 5832 |
. . 3
| |
| 10 | 9 | adantl 277 |
. 2
|
| 11 | 3, 8, 10 | 3eqtr3d 2270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: f1ocnvfvb 5904 isocnv 5935 f1oiso2 5951 ordiso2 7202 enomnilem 7305 enmkvlem 7328 enwomnilem 7336 frecuzrdglem 10633 frecuzrdgsuc 10636 frecuzrdgdomlem 10639 frecuzrdgsuctlem 10645 frecfzennn 10648 iseqf1olemkle 10719 iseqf1olemklt 10720 iseqf1olemnab 10723 seq3f1olemqsumkj 10733 seqf1oglem1 10741 seqf1oglem2 10742 hashfz1 11005 seq3coll 11064 summodclem3 11891 summodclem2a 11892 prodmodclem3 12086 prodmodclem2a 12087 nninfctlemfo 12561 sqpweven 12697 2sqpwodd 12698 phimullem 12747 eulerthlemth 12754 ennnfonelemkh 12983 ennnfonelemhf1o 12984 ennnfonelemex 12985 ennnfonelemnn0 12993 ctinfomlemom 12998 ctiunctlemfo 13010 mhmf1o 13503 ghmf1o 13812 gsumfzreidx 13874 reeflog 15537 isomninnlem 16398 iswomninnlem 16417 ismkvnnlem 16420 |
| Copyright terms: Public domain | W3C validator |