Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1osn | GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1osn.1 | ⊢ 𝐴 ∈ V |
f1osn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
f1osn | ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | fnsn 5250 | . 2 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
4 | 2, 1 | fnsn 5250 | . . 3 ⊢ {〈𝐵, 𝐴〉} Fn {𝐵} |
5 | 1, 2 | cnvsn 5091 | . . . 4 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
6 | 5 | fneq1i 5290 | . . 3 ⊢ (◡{〈𝐴, 𝐵〉} Fn {𝐵} ↔ {〈𝐵, 𝐴〉} Fn {𝐵}) |
7 | 4, 6 | mpbir 145 | . 2 ⊢ ◡{〈𝐴, 𝐵〉} Fn {𝐵} |
8 | dff1o4 5448 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} ↔ ({〈𝐴, 𝐵〉} Fn {𝐴} ∧ ◡{〈𝐴, 𝐵〉} Fn {𝐵})) | |
9 | 3, 7, 8 | mpbir2an 937 | 1 ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 {csn 3581 〈cop 3584 ◡ccnv 4608 Fn wfn 5191 –1-1-onto→wf1o 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 |
This theorem is referenced by: f1osng 5481 fsn 5665 mapsn 6664 ensn1 6770 phplem2 6827 ac6sfi 6872 fxnn0nninf 10381 |
Copyright terms: Public domain | W3C validator |