![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1osn | GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1osn.1 | ⊢ 𝐴 ∈ V |
f1osn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
f1osn | ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | fnsn 5308 | . 2 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
4 | 2, 1 | fnsn 5308 | . . 3 ⊢ {〈𝐵, 𝐴〉} Fn {𝐵} |
5 | 1, 2 | cnvsn 5148 | . . . 4 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
6 | 5 | fneq1i 5348 | . . 3 ⊢ (◡{〈𝐴, 𝐵〉} Fn {𝐵} ↔ {〈𝐵, 𝐴〉} Fn {𝐵}) |
7 | 4, 6 | mpbir 146 | . 2 ⊢ ◡{〈𝐴, 𝐵〉} Fn {𝐵} |
8 | dff1o4 5508 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} ↔ ({〈𝐴, 𝐵〉} Fn {𝐴} ∧ ◡{〈𝐴, 𝐵〉} Fn {𝐵})) | |
9 | 3, 7, 8 | mpbir2an 944 | 1 ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 {csn 3618 〈cop 3621 ◡ccnv 4658 Fn wfn 5249 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 |
This theorem is referenced by: f1osng 5541 fsn 5730 mapsn 6744 ensn1 6850 phplem2 6909 ac6sfi 6954 fxnn0nninf 10510 |
Copyright terms: Public domain | W3C validator |