ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1osn GIF version

Theorem f1osn 5517
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
f1osn.1 𝐴 ∈ V
f1osn.2 𝐵 ∈ V
Assertion
Ref Expression
f1osn {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}

Proof of Theorem f1osn
StepHypRef Expression
1 f1osn.1 . . 3 𝐴 ∈ V
2 f1osn.2 . . 3 𝐵 ∈ V
31, 2fnsn 5286 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐴}
42, 1fnsn 5286 . . 3 {⟨𝐵, 𝐴⟩} Fn {𝐵}
51, 2cnvsn 5126 . . . 4 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
65fneq1i 5326 . . 3 ({⟨𝐴, 𝐵⟩} Fn {𝐵} ↔ {⟨𝐵, 𝐴⟩} Fn {𝐵})
74, 6mpbir 146 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐵}
8 dff1o4 5485 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ↔ ({⟨𝐴, 𝐵⟩} Fn {𝐴} ∧ {⟨𝐴, 𝐵⟩} Fn {𝐵}))
93, 7, 8mpbir2an 944 1 {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
Colors of variables: wff set class
Syntax hints:  wcel 2160  Vcvv 2752  {csn 3607  cop 3610  ccnv 4640   Fn wfn 5227  1-1-ontowf1o 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239
This theorem is referenced by:  f1osng  5518  fsn  5705  mapsn  6711  ensn1  6817  phplem2  6876  ac6sfi  6921  fxnn0nninf  10464
  Copyright terms: Public domain W3C validator