ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovrn Unicode version

Theorem fnovrn 6075
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
fnovrn  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( C F D )  e.  ran  F
)

Proof of Theorem fnovrn
StepHypRef Expression
1 opelxpi 4696 . . 3  |-  ( ( C  e.  A  /\  D  e.  B )  -> 
<. C ,  D >.  e.  ( A  X.  B
) )
2 df-ov 5928 . . . 4  |-  ( C F D )  =  ( F `  <. C ,  D >. )
3 fnfvelrn 5697 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  <. C ,  D >.  e.  ( A  X.  B
) )  ->  ( F `  <. C ,  D >. )  e.  ran  F )
42, 3eqeltrid 2283 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  <. C ,  D >.  e.  ( A  X.  B
) )  ->  ( C F D )  e. 
ran  F )
51, 4sylan2 286 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  ( C  e.  A  /\  D  e.  B
) )  ->  ( C F D )  e. 
ran  F )
653impb 1201 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( C F D )  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   <.cop 3626    X. cxp 4662   ran crn 4665    Fn wfn 5254   ` cfv 5259  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928
This theorem is referenced by:  unirnioo  10065  ioorebasg  10067  blelrnps  14739  blelrn  14740  xmettx  14830
  Copyright terms: Public domain W3C validator