![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnovrn | GIF version |
Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
fnovrn | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4529 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) | |
2 | df-ov 5729 | . . . 4 ⊢ (𝐶𝐹𝐷) = (𝐹‘〈𝐶, 𝐷〉) | |
3 | fnfvelrn 5504 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐹‘〈𝐶, 𝐷〉) ∈ ran 𝐹) | |
4 | 2, 3 | syl5eqel 2199 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
5 | 1, 4 | sylan2 282 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
6 | 5 | 3impb 1158 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐹𝐷) ∈ ran 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 943 ∈ wcel 1461 〈cop 3494 × cxp 4495 ran crn 4498 Fn wfn 5074 ‘cfv 5079 (class class class)co 5726 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-sbc 2877 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-iota 5044 df-fun 5081 df-fn 5082 df-fv 5087 df-ov 5729 |
This theorem is referenced by: unirnioo 9643 ioorebasg 9645 blelrnps 12402 blelrn 12403 xmettx 12493 |
Copyright terms: Public domain | W3C validator |