ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfvelrn Unicode version

Theorem fnfvelrn 5767
Description: A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
Assertion
Ref Expression
fnfvelrn  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B
)  e.  ran  F
)

Proof of Theorem fnfvelrn
StepHypRef Expression
1 fvelrn 5766 . 2  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  ran  F
)
21funfni 5423 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B
)  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   ran crn 4720    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  ffvelcdm  5768  fnovrn  6153  fo1stresm  6307  fo2ndresm  6308  fo2ndf  6373  phplem4  7016  phplem4on  7029  cc2lem  7452  frec2uzrand  10627  frecuzrdglem  10633  frecuzrdg0  10635  frecuzrdg0t  10644  ccatrn  11144  uzin2  11498  ghmrn  13794  conjnmz  13816
  Copyright terms: Public domain W3C validator