ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blelrn Unicode version

Theorem blelrn 15088
Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blelrn  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )

Proof of Theorem blelrn
StepHypRef Expression
1 blf 15078 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
21ffnd 5473 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  Fn  ( X  X.  RR* ) )
3 fnovrn 6152 . 2  |-  ( ( ( ball `  D
)  Fn  ( X  X.  RR* )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  e. 
ran  ( ball `  D
) )
42, 3syl3an1 1304 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    e. wcel 2200   ~Pcpw 3649    X. cxp 4716   ran crn 4719    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   RR*cxr 8176   *Metcxmet 14494   ballcbl 14496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-psmet 14501  df-xmet 14502  df-bl 14504
This theorem is referenced by:  unirnbl  15091  blssex  15098  blopn  15158  metss  15162  metcnp3  15179  ioo2blex  15220
  Copyright terms: Public domain W3C validator