ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptmap Unicode version

Theorem fvmptmap 6830
Description: Special case of fvmpt 5710 for operator theorems. (Contributed by NM, 27-Nov-2007.)
Hypotheses
Ref Expression
fvmptmap.1  |-  C  e. 
_V
fvmptmap.2  |-  D  e. 
_V
fvmptmap.3  |-  R  e. 
_V
fvmptmap.4  |-  ( x  =  A  ->  B  =  C )
fvmptmap.5  |-  F  =  ( x  e.  ( R  ^m  D ) 
|->  B )
Assertion
Ref Expression
fvmptmap  |-  ( A : D --> R  -> 
( F `  A
)  =  C )
Distinct variable groups:    x, A    x, C    x, D    x, R
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmptmap
StepHypRef Expression
1 fvmptmap.3 . . 3  |-  R  e. 
_V
2 fvmptmap.2 . . 3  |-  D  e. 
_V
31, 2elmap 6822 . 2  |-  ( A  e.  ( R  ^m  D )  <->  A : D
--> R )
4 fvmptmap.4 . . 3  |-  ( x  =  A  ->  B  =  C )
5 fvmptmap.5 . . 3  |-  F  =  ( x  e.  ( R  ^m  D ) 
|->  B )
6 fvmptmap.1 . . 3  |-  C  e. 
_V
74, 5, 6fvmpt 5710 . 2  |-  ( A  e.  ( R  ^m  D )  ->  ( F `  A )  =  C )
83, 7sylbir 135 1  |-  ( A : D --> R  -> 
( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    |-> cmpt 4144   -->wf 5313   ` cfv 5317  (class class class)co 6000    ^m cmap 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator