| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmap | Unicode version | ||
| Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| elmap.1 |
|
| elmap.2 |
|
| Ref | Expression |
|---|---|
| elmap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmap.1 |
. 2
| |
| 2 | elmap.2 |
. 2
| |
| 3 | elmapg 6766 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-map 6755 |
| This theorem is referenced by: mapval2 6783 fvmptmap 6790 mapsn 6795 mapsnconst 6799 mapsncnv 6800 xpmapenlem 6966 infnninfOLD 7248 nnnninf 7249 nninfdcinf 7294 nninfwlporlem 7296 nninfwlpoimlemg 7298 1arith 12775 dfrhm2 14001 plyrecj 15320 subctctexmid 16109 0nninf 16113 nninffeq 16129 |
| Copyright terms: Public domain | W3C validator |