ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmap Unicode version

Theorem elmap 6822
Description: Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.)
Hypotheses
Ref Expression
elmap.1  |-  A  e. 
_V
elmap.2  |-  B  e. 
_V
Assertion
Ref Expression
elmap  |-  ( F  e.  ( A  ^m  B )  <->  F : B
--> A )

Proof of Theorem elmap
StepHypRef Expression
1 elmap.1 . 2  |-  A  e. 
_V
2 elmap.2 . 2  |-  B  e. 
_V
3 elmapg 6806 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( F  e.  ( A  ^m  B )  <-> 
F : B --> A ) )
41, 2, 3mp2an 426 1  |-  ( F  e.  ( A  ^m  B )  <->  F : B
--> A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2200   _Vcvv 2799   -->wf 5313  (class class class)co 6000    ^m cmap 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795
This theorem is referenced by:  mapval2  6823  fvmptmap  6830  mapsn  6835  mapsnconst  6839  mapsncnv  6840  xpmapenlem  7006  infnninfOLD  7288  nnnninf  7289  nninfdcinf  7334  nninfwlporlem  7336  nninfwlpoimlemg  7338  1arith  12885  dfrhm2  14112  plyrecj  15431  subctctexmid  16325  0nninf  16329  nninffeq  16345
  Copyright terms: Public domain W3C validator