ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsspw Unicode version

Theorem mapsspw 6701
Description: Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapsspw  |-  ( A  ^m  B )  C_  ~P ( B  X.  A
)

Proof of Theorem mapsspw
StepHypRef Expression
1 mapsspm 6699 . 2  |-  ( A  ^m  B )  C_  ( A  ^pm  B )
2 pmsspw 6700 . 2  |-  ( A 
^pm  B )  C_  ~P ( B  X.  A
)
31, 2sstri 3178 1  |-  ( A  ^m  B )  C_  ~P ( B  X.  A
)
Colors of variables: wff set class
Syntax hints:    C_ wss 3143   ~Pcpw 3589    X. cxp 4638  (class class class)co 5890    ^m cmap 6665    ^pm cpm 6666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-sbc 2977  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-opab 4079  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-map 6667  df-pm 6668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator