ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsspw Unicode version

Theorem mapsspw 6650
Description: Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapsspw  |-  ( A  ^m  B )  C_  ~P ( B  X.  A
)

Proof of Theorem mapsspw
StepHypRef Expression
1 mapsspm 6648 . 2  |-  ( A  ^m  B )  C_  ( A  ^pm  B )
2 pmsspw 6649 . 2  |-  ( A 
^pm  B )  C_  ~P ( B  X.  A
)
31, 2sstri 3151 1  |-  ( A  ^m  B )  C_  ~P ( B  X.  A
)
Colors of variables: wff set class
Syntax hints:    C_ wss 3116   ~Pcpw 3559    X. cxp 4602  (class class class)co 5842    ^m cmap 6614    ^pm cpm 6615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-pm 6617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator