| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptmap | GIF version | ||
| Description: Special case of fvmpt 5713 for operator theorems. (Contributed by NM, 27-Nov-2007.) |
| Ref | Expression |
|---|---|
| fvmptmap.1 | ⊢ 𝐶 ∈ V |
| fvmptmap.2 | ⊢ 𝐷 ∈ V |
| fvmptmap.3 | ⊢ 𝑅 ∈ V |
| fvmptmap.4 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptmap.5 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptmap | ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptmap.3 | . . 3 ⊢ 𝑅 ∈ V | |
| 2 | fvmptmap.2 | . . 3 ⊢ 𝐷 ∈ V | |
| 3 | 1, 2 | elmap 6832 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝐷) ↔ 𝐴:𝐷⟶𝑅) |
| 4 | fvmptmap.4 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | fvmptmap.5 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) | |
| 6 | fvmptmap.1 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | 4, 5, 6 | fvmpt 5713 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝐷) → (𝐹‘𝐴) = 𝐶) |
| 8 | 3, 7 | sylbir 135 | 1 ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4145 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 ↑𝑚 cmap 6803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-map 6805 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |