Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptmap | GIF version |
Description: Special case of fvmpt 5563 for operator theorems. (Contributed by NM, 27-Nov-2007.) |
Ref | Expression |
---|---|
fvmptmap.1 | ⊢ 𝐶 ∈ V |
fvmptmap.2 | ⊢ 𝐷 ∈ V |
fvmptmap.3 | ⊢ 𝑅 ∈ V |
fvmptmap.4 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptmap.5 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptmap | ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptmap.3 | . . 3 ⊢ 𝑅 ∈ V | |
2 | fvmptmap.2 | . . 3 ⊢ 𝐷 ∈ V | |
3 | 1, 2 | elmap 6643 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝐷) ↔ 𝐴:𝐷⟶𝑅) |
4 | fvmptmap.4 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | fvmptmap.5 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) | |
6 | fvmptmap.1 | . . 3 ⊢ 𝐶 ∈ V | |
7 | 4, 5, 6 | fvmpt 5563 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝐷) → (𝐹‘𝐴) = 𝐶) |
8 | 3, 7 | sylbir 134 | 1 ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ↦ cmpt 4043 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ↑𝑚 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |