ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptmap GIF version

Theorem fvmptmap 6698
Description: Special case of fvmpt 5606 for operator theorems. (Contributed by NM, 27-Nov-2007.)
Hypotheses
Ref Expression
fvmptmap.1 𝐶 ∈ V
fvmptmap.2 𝐷 ∈ V
fvmptmap.3 𝑅 ∈ V
fvmptmap.4 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptmap.5 𝐹 = (𝑥 ∈ (𝑅𝑚 𝐷) ↦ 𝐵)
Assertion
Ref Expression
fvmptmap (𝐴:𝐷𝑅 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptmap
StepHypRef Expression
1 fvmptmap.3 . . 3 𝑅 ∈ V
2 fvmptmap.2 . . 3 𝐷 ∈ V
31, 2elmap 6690 . 2 (𝐴 ∈ (𝑅𝑚 𝐷) ↔ 𝐴:𝐷𝑅)
4 fvmptmap.4 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
5 fvmptmap.5 . . 3 𝐹 = (𝑥 ∈ (𝑅𝑚 𝐷) ↦ 𝐵)
6 fvmptmap.1 . . 3 𝐶 ∈ V
74, 5, 6fvmpt 5606 . 2 (𝐴 ∈ (𝑅𝑚 𝐷) → (𝐹𝐴) = 𝐶)
83, 7sylbir 135 1 (𝐴:𝐷𝑅 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  Vcvv 2749  cmpt 4076  wf 5224  cfv 5228  (class class class)co 5888  𝑚 cmap 6661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-map 6663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator