| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptmap | GIF version | ||
| Description: Special case of fvmpt 5684 for operator theorems. (Contributed by NM, 27-Nov-2007.) |
| Ref | Expression |
|---|---|
| fvmptmap.1 | ⊢ 𝐶 ∈ V |
| fvmptmap.2 | ⊢ 𝐷 ∈ V |
| fvmptmap.3 | ⊢ 𝑅 ∈ V |
| fvmptmap.4 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptmap.5 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptmap | ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptmap.3 | . . 3 ⊢ 𝑅 ∈ V | |
| 2 | fvmptmap.2 | . . 3 ⊢ 𝐷 ∈ V | |
| 3 | 1, 2 | elmap 6794 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝐷) ↔ 𝐴:𝐷⟶𝑅) |
| 4 | fvmptmap.4 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 5 | fvmptmap.5 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) | |
| 6 | fvmptmap.1 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | 4, 5, 6 | fvmpt 5684 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝐷) → (𝐹‘𝐴) = 𝐶) |
| 8 | 3, 7 | sylbir 135 | 1 ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ↦ cmpt 4124 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ↑𝑚 cmap 6765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-map 6767 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |