Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptmap | GIF version |
Description: Special case of fvmpt 5538 for operator theorems. (Contributed by NM, 27-Nov-2007.) |
Ref | Expression |
---|---|
fvmptmap.1 | ⊢ 𝐶 ∈ V |
fvmptmap.2 | ⊢ 𝐷 ∈ V |
fvmptmap.3 | ⊢ 𝑅 ∈ V |
fvmptmap.4 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptmap.5 | ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptmap | ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptmap.3 | . . 3 ⊢ 𝑅 ∈ V | |
2 | fvmptmap.2 | . . 3 ⊢ 𝐷 ∈ V | |
3 | 1, 2 | elmap 6611 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝐷) ↔ 𝐴:𝐷⟶𝑅) |
4 | fvmptmap.4 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
5 | fvmptmap.5 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) | |
6 | fvmptmap.1 | . . 3 ⊢ 𝐶 ∈ V | |
7 | 4, 5, 6 | fvmpt 5538 | . 2 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝐷) → (𝐹‘𝐴) = 𝐶) |
8 | 3, 7 | sylbir 134 | 1 ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 ∈ wcel 2125 Vcvv 2709 ↦ cmpt 4021 ⟶wf 5159 ‘cfv 5163 (class class class)co 5814 ↑𝑚 cmap 6582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-map 6584 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |