ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptmap GIF version

Theorem fvmptmap 6619
Description: Special case of fvmpt 5538 for operator theorems. (Contributed by NM, 27-Nov-2007.)
Hypotheses
Ref Expression
fvmptmap.1 𝐶 ∈ V
fvmptmap.2 𝐷 ∈ V
fvmptmap.3 𝑅 ∈ V
fvmptmap.4 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptmap.5 𝐹 = (𝑥 ∈ (𝑅𝑚 𝐷) ↦ 𝐵)
Assertion
Ref Expression
fvmptmap (𝐴:𝐷𝑅 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptmap
StepHypRef Expression
1 fvmptmap.3 . . 3 𝑅 ∈ V
2 fvmptmap.2 . . 3 𝐷 ∈ V
31, 2elmap 6611 . 2 (𝐴 ∈ (𝑅𝑚 𝐷) ↔ 𝐴:𝐷𝑅)
4 fvmptmap.4 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
5 fvmptmap.5 . . 3 𝐹 = (𝑥 ∈ (𝑅𝑚 𝐷) ↦ 𝐵)
6 fvmptmap.1 . . 3 𝐶 ∈ V
74, 5, 6fvmpt 5538 . 2 (𝐴 ∈ (𝑅𝑚 𝐷) → (𝐹𝐴) = 𝐶)
83, 7sylbir 134 1 (𝐴:𝐷𝑅 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 2125  Vcvv 2709  cmpt 4021  wf 5159  cfv 5163  (class class class)co 5814  𝑚 cmap 6582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-map 6584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator