ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtned Unicode version

Theorem gtned 8167
Description: 'Less than' implies not equal. See also gtapd 8692 which is the same but for apartness. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltned.2  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
gtned  |-  ( ph  ->  B  =/=  A )

Proof of Theorem gtned
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltned.2 . 2  |-  ( ph  ->  A  <  B )
3 ltne 8139 . 2  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175    =/= wne 2375   class class class wbr 4043   RRcr 7906    < clt 8089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-pre-ltirr 8019
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-pnf 8091  df-mnf 8092  df-ltxr 8094
This theorem is referenced by:  ltned  8168  seq3f1olemqsumkj  10637  seqf1oglem1  10645  seqf1oglem2  10646  nn0opthlem2d  10847  zfz1isolemiso  10965  ennnfonelemim  12714  logbgcd1irr  15357  logbgcd1irraplemexp  15358  perfectlem2  15390  gausslemma2dlem4  15459
  Copyright terms: Public domain W3C validator