ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemqsumkj Unicode version

Theorem seq3f1olemqsumkj 10397
Description: Lemma for seq3f1o 10403. 
Q gives the same sum as 
J in the range  ( K ... ( `' J `  K ) ). (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqf1o.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
iseqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
iseqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1o.7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemstep.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemstep.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemstep.const  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
iseqf1olemnk  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
iseqf1olemqres.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemqsumk.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
seq3f1olemqsumkj  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ J  /  f ]_ P
) `  ( `' J `  K )
)  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
Distinct variable groups:    u, J    u, K, x    u, M, x   
u, N    x, J    x, Q    ph, x    x,  .+ , y, z    f, G, x   
f, J, y, z   
y, K, z    f, M    f, N, x    x, P, y, z    Q, f, y, z    x, S, y, z    ph, u    ph, y, z
Allowed substitution hints:    ph( f)    P( u, f)    .+ ( u, f)    Q( u)    S( u, f)    F( x, y, z, u, f)    G( y, z, u)    K( f)    M( y, z)    N( y, z)

Proof of Theorem seq3f1olemqsumkj
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemstep.k . . . . . . 7  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzelz 9928 . . . . . . 7  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
31, 2syl 14 . . . . . 6  |-  ( ph  ->  K  e.  ZZ )
4 iseqf1olemstep.j . . . . . . . . . . 11  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
5 f1ocnv 5427 . . . . . . . . . . 11  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N
) )
64, 5syl 14 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( M ... N ) -1-1-onto-> ( M ... N ) )
7 f1of 5414 . . . . . . . . . 10  |-  ( `' J : ( M ... N ) -1-1-onto-> ( M ... N )  ->  `' J : ( M ... N ) --> ( M ... N ) )
86, 7syl 14 . . . . . . . . 9  |-  ( ph  ->  `' J : ( M ... N ) --> ( M ... N ) )
98, 1ffvelrnd 5603 . . . . . . . 8  |-  ( ph  ->  ( `' J `  K )  e.  ( M ... N ) )
10 elfzelz 9928 . . . . . . . 8  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  e.  ZZ )
119, 10syl 14 . . . . . . 7  |-  ( ph  ->  ( `' J `  K )  e.  ZZ )
12 peano2zm 9205 . . . . . . 7  |-  ( ( `' J `  K )  e.  ZZ  ->  (
( `' J `  K )  -  1 )  e.  ZZ )
1311, 12syl 14 . . . . . 6  |-  ( ph  ->  ( ( `' J `  K )  -  1 )  e.  ZZ )
14 iseqf1o.4 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
15 iseqf1olemstep.const . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `  x )  =  x )
16 iseqf1olemnk . . . . . . . 8  |-  ( ph  ->  K  =/=  ( `' J `  K ) )
1714, 1, 4, 15, 16iseqf1olemklt 10384 . . . . . . 7  |-  ( ph  ->  K  <  ( `' J `  K ) )
18 zltlem1 9224 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  <-> 
K  <_  ( ( `' J `  K )  -  1 ) ) )
193, 11, 18syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( K  <  ( `' J `  K )  <-> 
K  <_  ( ( `' J `  K )  -  1 ) ) )
2017, 19mpbid 146 . . . . . 6  |-  ( ph  ->  K  <_  ( ( `' J `  K )  -  1 ) )
21 eluz2 9445 . . . . . 6  |-  ( ( ( `' J `  K )  -  1 )  e.  ( ZZ>= `  K )  <->  ( K  e.  ZZ  /\  ( ( `' J `  K )  -  1 )  e.  ZZ  /\  K  <_ 
( ( `' J `  K )  -  1 ) ) )
223, 13, 20, 21syl3anbrc 1166 . . . . 5  |-  ( ph  ->  ( ( `' J `  K )  -  1 )  e.  ( ZZ>= `  K ) )
23 1zzd 9194 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
241adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  K  e.  ( M ... N ) )
254adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) )
26 elfzel1 9927 . . . . . . . . . . . . . 14  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
271, 26syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
2827adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  M  e.  ZZ )
29 elfzel2 9926 . . . . . . . . . . . . . 14  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
301, 29syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
3130adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  N  e.  ZZ )
32 elfzelz 9928 . . . . . . . . . . . . . 14  |-  ( v  e.  ( K ... ( ( `' J `  K )  -  1 ) )  ->  v  e.  ZZ )
3332adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  v  e.  ZZ )
3433peano2zd 9289 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( v  +  1 )  e.  ZZ )
3528, 31, 343jca 1162 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( v  +  1 )  e.  ZZ ) )
3628zred 9286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  M  e.  RR )
3733zred 9286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  v  e.  RR )
3834zred 9286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( v  +  1 )  e.  RR )
393zred 9286 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  e.  RR )
4039adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  K  e.  RR )
41 elfzle1 9929 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( M ... N )  ->  M  <_  K )
421, 41syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  <_  K )
4342adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  M  <_  K )
44 elfzle1 9929 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( K ... ( ( `' J `  K )  -  1 ) )  ->  K  <_  v )
4544adantl 275 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  K  <_  v )
4636, 40, 37, 43, 45letrd 7999 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  M  <_  v )
4737lep1d 8802 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  v  <_  ( v  +  1 ) )
4836, 37, 38, 46, 47letrd 7999 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  M  <_  ( v  +  1 ) )
4911zred 9286 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' J `  K )  e.  RR )
5049adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( `' J `  K )  e.  RR )
5131zred 9286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  N  e.  RR )
52 elfzle2 9930 . . . . . . . . . . . . . . 15  |-  ( v  e.  ( K ... ( ( `' J `  K )  -  1 ) )  ->  v  <_  ( ( `' J `  K )  -  1 ) )
5352adantl 275 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  v  <_  ( ( `' J `  K )  -  1 ) )
54 1red 7893 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  1  e.  RR )
55 leaddsub 8313 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  RR  /\  1  e.  RR  /\  ( `' J `  K )  e.  RR )  -> 
( ( v  +  1 )  <_  ( `' J `  K )  <-> 
v  <_  ( ( `' J `  K )  -  1 ) ) )
5637, 54, 50, 55syl3anc 1220 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( (
v  +  1 )  <_  ( `' J `  K )  <->  v  <_  ( ( `' J `  K )  -  1 ) ) )
5753, 56mpbird 166 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( v  +  1 )  <_ 
( `' J `  K ) )
58 elfzle2 9930 . . . . . . . . . . . . . . 15  |-  ( ( `' J `  K )  e.  ( M ... N )  ->  ( `' J `  K )  <_  N )
599, 58syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' J `  K )  <_  N
)
6059adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( `' J `  K )  <_  N )
6138, 50, 51, 57, 60letrd 7999 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( v  +  1 )  <_  N )
6248, 61jca 304 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( M  <_  ( v  +  1 )  /\  ( v  +  1 )  <_  N ) )
63 elfz2 9919 . . . . . . . . . . 11  |-  ( ( v  +  1 )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( v  +  1 )  e.  ZZ )  /\  ( M  <_  ( v  +  1 )  /\  (
v  +  1 )  <_  N ) ) )
6435, 62, 63sylanbrc 414 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( v  +  1 )  e.  ( M ... N
) )
65 iseqf1olemqres.q . . . . . . . . . 10  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
6624, 25, 64, 65iseqf1olemqval 10386 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( Q `  ( v  +  1 ) )  =  if ( ( v  +  1 )  e.  ( K ... ( `' J `  K ) ) ,  if ( ( v  +  1 )  =  K ,  K ,  ( J `  ( ( v  +  1 )  -  1 ) ) ) ,  ( J `  (
v  +  1 ) ) ) )
6724, 2syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  K  e.  ZZ )
6811adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( `' J `  K )  e.  ZZ )
6967, 68, 343jca 1162 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  (
v  +  1 )  e.  ZZ ) )
7040, 37, 38, 45, 47letrd 7999 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  K  <_  ( v  +  1 ) )
7170, 57jca 304 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( K  <_  ( v  +  1 )  /\  ( v  +  1 )  <_ 
( `' J `  K ) ) )
72 elfz2 9919 . . . . . . . . . . 11  |-  ( ( v  +  1 )  e.  ( K ... ( `' J `  K ) )  <->  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  (
v  +  1 )  e.  ZZ )  /\  ( K  <_  ( v  +  1 )  /\  ( v  +  1 )  <_  ( `' J `  K )
) ) )
7369, 71, 72sylanbrc 414 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( v  +  1 )  e.  ( K ... ( `' J `  K ) ) )
7473iftrued 3512 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  if (
( v  +  1 )  e.  ( K ... ( `' J `  K ) ) ,  if ( ( v  +  1 )  =  K ,  K , 
( J `  (
( v  +  1 )  -  1 ) ) ) ,  ( J `  ( v  +  1 ) ) )  =  if ( ( v  +  1 )  =  K ,  K ,  ( J `  ( ( v  +  1 )  -  1 ) ) ) )
7566, 74eqtrd 2190 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( Q `  ( v  +  1 ) )  =  if ( ( v  +  1 )  =  K ,  K ,  ( J `  ( ( v  +  1 )  -  1 ) ) ) )
76 zleltp1 9222 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  v  e.  ZZ )  ->  ( K  <_  v  <->  K  <  ( v  +  1 ) ) )
7767, 33, 76syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( K  <_  v  <->  K  <  ( v  +  1 ) ) )
7845, 77mpbid 146 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  K  <  ( v  +  1 ) )
7940, 78gtned 7989 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( v  +  1 )  =/= 
K )
8079neneqd 2348 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  -.  (
v  +  1 )  =  K )
8180iffalsed 3515 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  if (
( v  +  1 )  =  K ,  K ,  ( J `  ( ( v  +  1 )  -  1 ) ) )  =  ( J `  (
( v  +  1 )  -  1 ) ) )
8233zcnd 9287 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  v  e.  CC )
83 pncan1 8252 . . . . . . . . . 10  |-  ( v  e.  CC  ->  (
( v  +  1 )  -  1 )  =  v )
8482, 83syl 14 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( (
v  +  1 )  -  1 )  =  v )
8584fveq2d 5472 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( J `  ( ( v  +  1 )  -  1 ) )  =  ( J `  v ) )
8675, 81, 853eqtrd 2194 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( Q `  ( v  +  1 ) )  =  ( J `  v ) )
8786fveq2d 5472 . . . . . 6  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( G `  ( Q `  (
v  +  1 ) ) )  =  ( G `  ( J `
 v ) ) )
881, 4, 65iseqf1olemqf1o 10392 . . . . . . . 8  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
8988adantr 274 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  Q :
( M ... N
)
-1-1-onto-> ( M ... N ) )
90 iseqf1o.7 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
9190adantlr 469 . . . . . . 7  |-  ( ( ( ph  /\  v  e.  ( K ... (
( `' J `  K )  -  1 ) ) )  /\  x  e.  ( ZZ>= `  M ) )  -> 
( G `  x
)  e.  S )
92 iseqf1olemqsumk.p . . . . . . 7  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
9324, 89, 64, 91, 92iseqf1olemfvp 10396 . . . . . 6  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( [_ Q  /  f ]_ P `  ( v  +  1 ) )  =  ( G `  ( Q `
 ( v  +  1 ) ) ) )
9428, 31, 333jca 1162 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  v  e.  ZZ ) )
9511, 23zsubcld 9291 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( `' J `  K )  -  1 )  e.  ZZ )
9695zred 9286 . . . . . . . . . . 11  |-  ( ph  ->  ( ( `' J `  K )  -  1 )  e.  RR )
9796adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( ( `' J `  K )  -  1 )  e.  RR )
9850lem1d 8804 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( ( `' J `  K )  -  1 )  <_ 
( `' J `  K ) )
9997, 50, 51, 98, 60letrd 7999 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( ( `' J `  K )  -  1 )  <_  N )
10037, 97, 51, 53, 99letrd 7999 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  v  <_  N )
10146, 100jca 304 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( M  <_  v  /\  v  <_  N ) )
102 elfz2 9919 . . . . . . . 8  |-  ( v  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  v  e.  ZZ )  /\  ( M  <_  v  /\  v  <_  N ) ) )
10394, 101, 102sylanbrc 414 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  v  e.  ( M ... N ) )
104103, 25, 103, 91, 92iseqf1olemfvp 10396 . . . . . 6  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( [_ J  /  f ]_ P `  v )  =  ( G `  ( J `
 v ) ) )
10587, 93, 1043eqtr4rd 2201 . . . . 5  |-  ( (
ph  /\  v  e.  ( K ... ( ( `' J `  K )  -  1 ) ) )  ->  ( [_ J  /  f ]_ P `  v )  =  (
[_ Q  /  f ]_ P `  ( v  +  1 ) ) )
106 simpr 109 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  K )
)
107 elfzuz 9924 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
1081, 107syl 14 . . . . . . . 8  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
109108adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
110 uztrn 9455 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
111106, 109, 110syl2anc 409 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  M )
)
1121, 4, 65, 90, 92iseqf1olemjpcl 10394 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ J  /  f ]_ P `  x )  e.  S
)
113111, 112syldan 280 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( [_ J  /  f ]_ P `  x )  e.  S
)
114 simpr 109 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  x  e.  ( ZZ>= `  ( K  +  1 ) ) )
1153adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  K  e.  ZZ )
116115peano2zd 9289 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( K  +  1 )  e.  ZZ )
117115zred 9286 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  K  e.  RR )
118117lep1d 8802 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  K  <_  ( K  +  1 ) )
119 eluz2 9445 . . . . . . . 8  |-  ( ( K  +  1 )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( K  +  1 )  e.  ZZ  /\  K  <_ 
( K  +  1 ) ) )
120115, 116, 118, 119syl3anbrc 1166 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( K  +  1 )  e.  ( ZZ>= `  K )
)
121 uztrn 9455 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  ( K  +  1
) )  /\  ( K  +  1 )  e.  ( ZZ>= `  K
) )  ->  x  e.  ( ZZ>= `  K )
)
122114, 120, 121syl2anc 409 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  x  e.  ( ZZ>= `  K )
)
1231, 4, 65, 90, 92iseqf1olemqpcl 10395 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
124111, 123syldan 280 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
125122, 124syldan 280 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
126 iseqf1o.1 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
12722, 23, 105, 113, 125, 126seq3shft2 10372 . . . 4  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ J  /  f ]_ P
) `  ( ( `' J `  K )  -  1 ) )  =  (  seq ( K  +  1 ) (  .+  ,  [_ Q  /  f ]_ P
) `  ( (
( `' J `  K )  -  1 )  +  1 ) ) )
12811zcnd 9287 . . . . . 6  |-  ( ph  ->  ( `' J `  K )  e.  CC )
129 npcan1 8253 . . . . . 6  |-  ( ( `' J `  K )  e.  CC  ->  (
( ( `' J `  K )  -  1 )  +  1 )  =  ( `' J `  K ) )
130128, 129syl 14 . . . . 5  |-  ( ph  ->  ( ( ( `' J `  K )  -  1 )  +  1 )  =  ( `' J `  K ) )
131130fveq2d 5472 . . . 4  |-  ( ph  ->  (  seq ( K  +  1 ) ( 
.+  ,  [_ Q  /  f ]_ P
) `  ( (
( `' J `  K )  -  1 )  +  1 ) )  =  (  seq ( K  +  1 ) (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
132127, 131eqtrd 2190 . . 3  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ J  /  f ]_ P
) `  ( ( `' J `  K )  -  1 ) )  =  (  seq ( K  +  1 ) (  .+  ,  [_ Q  /  f ]_ P
) `  ( `' J `  K )
) )
133 f1ocnvfv2 5728 . . . . . 6  |-  ( ( J : ( M ... N ) -1-1-onto-> ( M ... N )  /\  K  e.  ( M ... N ) )  -> 
( J `  ( `' J `  K ) )  =  K )
1344, 1, 133syl2anc 409 . . . . 5  |-  ( ph  ->  ( J `  ( `' J `  K ) )  =  K )
135134fveq2d 5472 . . . 4  |-  ( ph  ->  ( G `  ( J `  ( `' J `  K )
) )  =  ( G `  K ) )
1361, 4, 9, 90, 92iseqf1olemfvp 10396 . . . 4  |-  ( ph  ->  ( [_ J  / 
f ]_ P `  ( `' J `  K ) )  =  ( G `
 ( J `  ( `' J `  K ) ) ) )
1371, 88, 1, 90, 92iseqf1olemfvp 10396 . . . . 5  |-  ( ph  ->  ( [_ Q  / 
f ]_ P `  K
)  =  ( G `
 ( Q `  K ) ) )
1381, 4, 1, 65iseqf1olemqval 10386 . . . . . . 7  |-  ( ph  ->  ( Q `  K
)  =  if ( K  e.  ( K ... ( `' J `  K ) ) ,  if ( K  =  K ,  K , 
( J `  ( K  -  1 ) ) ) ,  ( J `  K ) ) )
13914, 1, 4, 15iseqf1olemkle 10383 . . . . . . . . . 10  |-  ( ph  ->  K  <_  ( `' J `  K )
)
140 eluz2 9445 . . . . . . . . . 10  |-  ( ( `' J `  K )  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  K  <_  ( `' J `  K ) ) )
1413, 11, 139, 140syl3anbrc 1166 . . . . . . . . 9  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  K ) )
142 eluzfz1 9933 . . . . . . . . 9  |-  ( ( `' J `  K )  e.  ( ZZ>= `  K
)  ->  K  e.  ( K ... ( `' J `  K ) ) )
143141, 142syl 14 . . . . . . . 8  |-  ( ph  ->  K  e.  ( K ... ( `' J `  K ) ) )
144143iftrued 3512 . . . . . . 7  |-  ( ph  ->  if ( K  e.  ( K ... ( `' J `  K ) ) ,  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) ) ,  ( J `  K
) )  =  if ( K  =  K ,  K ,  ( J `  ( K  -  1 ) ) ) )
145 eqidd 2158 . . . . . . . 8  |-  ( ph  ->  K  =  K )
146145iftrued 3512 . . . . . . 7  |-  ( ph  ->  if ( K  =  K ,  K , 
( J `  ( K  -  1 ) ) )  =  K )
147138, 144, 1463eqtrd 2194 . . . . . 6  |-  ( ph  ->  ( Q `  K
)  =  K )
148147fveq2d 5472 . . . . 5  |-  ( ph  ->  ( G `  ( Q `  K )
)  =  ( G `
 K ) )
149137, 148eqtrd 2190 . . . 4  |-  ( ph  ->  ( [_ Q  / 
f ]_ P `  K
)  =  ( G `
 K ) )
150135, 136, 1493eqtr4d 2200 . . 3  |-  ( ph  ->  ( [_ J  / 
f ]_ P `  ( `' J `  K ) )  =  ( [_ Q  /  f ]_ P `  K ) )
151132, 150oveq12d 5842 . 2  |-  ( ph  ->  ( (  seq K
(  .+  ,  [_ J  /  f ]_ P
) `  ( ( `' J `  K )  -  1 ) ) 
.+  ( [_ J  /  f ]_ P `  ( `' J `  K ) ) )  =  ( (  seq ( K  +  1 ) (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) )  .+  ( [_ Q  /  f ]_ P `  K ) ) )
1523peano2zd 9289 . . . 4  |-  ( ph  ->  ( K  +  1 )  e.  ZZ )
153 zltp1le 9221 . . . . . 6  |-  ( ( K  e.  ZZ  /\  ( `' J `  K )  e.  ZZ )  -> 
( K  <  ( `' J `  K )  <-> 
( K  +  1 )  <_  ( `' J `  K )
) )
1543, 11, 153syl2anc 409 . . . . 5  |-  ( ph  ->  ( K  <  ( `' J `  K )  <-> 
( K  +  1 )  <_  ( `' J `  K )
) )
15517, 154mpbid 146 . . . 4  |-  ( ph  ->  ( K  +  1 )  <_  ( `' J `  K )
)
156 eluz2 9445 . . . 4  |-  ( ( `' J `  K )  e.  ( ZZ>= `  ( K  +  1 ) )  <->  ( ( K  +  1 )  e.  ZZ  /\  ( `' J `  K )  e.  ZZ  /\  ( K  +  1 )  <_  ( `' J `  K ) ) )
157152, 11, 155, 156syl3anbrc 1166 . . 3  |-  ( ph  ->  ( `' J `  K )  e.  (
ZZ>= `  ( K  + 
1 ) ) )
1583, 157, 113, 126seq3m1 10367 . 2  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ J  /  f ]_ P
) `  ( `' J `  K )
)  =  ( (  seq K (  .+  ,  [_ J  /  f ]_ P ) `  (
( `' J `  K )  -  1 ) )  .+  ( [_ J  /  f ]_ P `  ( `' J `  K ) ) ) )
159 iseqf1o.3 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
160126, 159, 157, 3, 124seq3-1p 10379 . . 3  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ Q  /  f ]_ P
) `  ( `' J `  K )
)  =  ( (
[_ Q  /  f ]_ P `  K ) 
.+  (  seq ( K  +  1 ) (  .+  ,  [_ Q  /  f ]_ P
) `  ( `' J `  K )
) ) )
161 iseqf1o.2 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
162 fveq2 5468 . . . . . . 7  |-  ( x  =  ( Q `  K )  ->  ( G `  x )  =  ( G `  ( Q `  K ) ) )
163162eleq1d 2226 . . . . . 6  |-  ( x  =  ( Q `  K )  ->  (
( G `  x
)  e.  S  <->  ( G `  ( Q `  K
) )  e.  S
) )
16490ralrimiva 2530 . . . . . 6  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
165147, 108eqeltrd 2234 . . . . . 6  |-  ( ph  ->  ( Q `  K
)  e.  ( ZZ>= `  M ) )
166163, 164, 165rspcdva 2821 . . . . 5  |-  ( ph  ->  ( G `  ( Q `  K )
)  e.  S )
167137, 166eqeltrd 2234 . . . 4  |-  ( ph  ->  ( [_ Q  / 
f ]_ P `  K
)  e.  S )
168 eqid 2157 . . . . . 6  |-  ( ZZ>= `  ( K  +  1
) )  =  (
ZZ>= `  ( K  + 
1 ) )
169168, 152, 125, 126seqf 10360 . . . . 5  |-  ( ph  ->  seq ( K  + 
1 ) (  .+  ,  [_ Q  /  f ]_ P ) : (
ZZ>= `  ( K  + 
1 ) ) --> S )
170169, 157ffvelrnd 5603 . . . 4  |-  ( ph  ->  (  seq ( K  +  1 ) ( 
.+  ,  [_ Q  /  f ]_ P
) `  ( `' J `  K )
)  e.  S )
171161, 167, 170caovcomd 5977 . . 3  |-  ( ph  ->  ( ( [_ Q  /  f ]_ P `  K )  .+  (  seq ( K  +  1 ) (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )  =  ( (  seq ( K  +  1 ) ( 
.+  ,  [_ Q  /  f ]_ P
) `  ( `' J `  K )
)  .+  ( [_ Q  /  f ]_ P `  K ) ) )
172160, 171eqtrd 2190 . 2  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ Q  /  f ]_ P
) `  ( `' J `  K )
)  =  ( (  seq ( K  + 
1 ) (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) )  .+  ( [_ Q  /  f ]_ P `  K ) ) )
173151, 158, 1723eqtr4d 2200 1  |-  ( ph  ->  (  seq K ( 
.+  ,  [_ J  /  f ]_ P
) `  ( `' J `  K )
)  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   [_csb 3031   ifcif 3505   class class class wbr 3965    |-> cmpt 4025   `'ccnv 4585   -->wf 5166   -1-1-onto->wf1o 5169   ` cfv 5170  (class class class)co 5824   CCcc 7730   RRcr 7731   1c1 7733    + caddc 7735    < clt 7912    <_ cle 7913    - cmin 8046   ZZcz 9167   ZZ>=cuz 9439   ...cfz 9912  ..^cfzo 10041    seqcseq 10344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-addass 7834  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-1o 6363  df-er 6480  df-en 6686  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-inn 8834  df-n0 9091  df-z 9168  df-uz 9440  df-fz 9913  df-fzo 10042  df-seqfrec 10345
This theorem is referenced by:  seq3f1olemqsumk  10398
  Copyright terms: Public domain W3C validator