| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gtned | GIF version | ||
| Description: 'Less than' implies not equal. See also gtapd 8752 which is the same but for apartness. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltned.2 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| gtned | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltned.2 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 3 | ltne 8199 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ≠ wne 2380 class class class wbr 4062 ℝcr 7966 < clt 8149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-pre-ltirr 8079 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-pnf 8151 df-mnf 8152 df-ltxr 8154 |
| This theorem is referenced by: ltned 8228 seq3f1olemqsumkj 10700 seqf1oglem1 10708 seqf1oglem2 10709 nn0opthlem2d 10910 zfz1isolemiso 11028 ennnfonelemim 12961 logbgcd1irr 15606 logbgcd1irraplemexp 15607 perfectlem2 15639 gausslemma2dlem4 15708 |
| Copyright terms: Public domain | W3C validator |