![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gtned | GIF version |
Description: 'Less than' implies not equal. See also gtapd 8656 which is the same but for apartness. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltned.2 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
gtned | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltned.2 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
3 | ltne 8104 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ≠ wne 2364 class class class wbr 4029 ℝcr 7871 < clt 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-ltxr 8059 |
This theorem is referenced by: ltned 8133 seq3f1olemqsumkj 10582 seqf1oglem1 10590 seqf1oglem2 10591 nn0opthlem2d 10792 zfz1isolemiso 10910 ennnfonelemim 12581 logbgcd1irr 15099 logbgcd1irraplemexp 15100 gausslemma2dlem4 15180 |
Copyright terms: Public domain | W3C validator |