ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem2d Unicode version

Theorem nn0opthlem2d 10467
Description: Lemma for nn0opth2 10470. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthd.2  |-  ( ph  ->  B  e.  NN0 )
nn0opthd.3  |-  ( ph  ->  C  e.  NN0 )
nn0opthd.4  |-  ( ph  ->  D  e.  NN0 )
Assertion
Ref Expression
nn0opthlem2d  |-  ( ph  ->  ( ( A  +  B )  <  C  ->  ( ( C  x.  C )  +  D
)  =/=  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) ) )

Proof of Theorem nn0opthlem2d
StepHypRef Expression
1 nn0opthd.1 . . . . . . . 8  |-  ( ph  ->  A  e.  NN0 )
2 nn0opthd.2 . . . . . . . 8  |-  ( ph  ->  B  e.  NN0 )
31, 2nn0addcld 9034 . . . . . . 7  |-  ( ph  ->  ( A  +  B
)  e.  NN0 )
43nn0red 9031 . . . . . 6  |-  ( ph  ->  ( A  +  B
)  e.  RR )
54, 4remulcld 7796 . . . . 5  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  RR )
62nn0red 9031 . . . . 5  |-  ( ph  ->  B  e.  RR )
75, 6readdcld 7795 . . . 4  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  RR )
87adantr 274 . . 3  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  e.  RR )
9 nn0opthd.3 . . . . . . 7  |-  ( ph  ->  C  e.  NN0 )
109nn0red 9031 . . . . . 6  |-  ( ph  ->  C  e.  RR )
1110, 10remulcld 7796 . . . . 5  |-  ( ph  ->  ( C  x.  C
)  e.  RR )
1211adantr 274 . . . 4  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( C  x.  C )  e.  RR )
13 nn0opthd.4 . . . . . . 7  |-  ( ph  ->  D  e.  NN0 )
1413nn0red 9031 . . . . . 6  |-  ( ph  ->  D  e.  RR )
1511, 14readdcld 7795 . . . . 5  |-  ( ph  ->  ( ( C  x.  C )  +  D
)  e.  RR )
1615adantr 274 . . . 4  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( ( C  x.  C )  +  D )  e.  RR )
17 2re 8790 . . . . . . . . 9  |-  2  e.  RR
1817a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  RR )
1918, 4remulcld 7796 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( A  +  B )
)  e.  RR )
205, 19readdcld 7795 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  ( 2  x.  ( A  +  B ) ) )  e.  RR )
2120adantr 274 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  ( 2  x.  ( A  +  B
) ) )  e.  RR )
22 nn0addge2 9024 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  NN0 )  ->  B  <_  ( A  +  B ) )
236, 1, 22syl2anc 408 . . . . . . . 8  |-  ( ph  ->  B  <_  ( A  +  B ) )
24 nn0addge1 9023 . . . . . . . . . 10  |-  ( ( ( A  +  B
)  e.  RR  /\  ( A  +  B
)  e.  NN0 )  ->  ( A  +  B
)  <_  ( ( A  +  B )  +  ( A  +  B ) ) )
254, 3, 24syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( A  +  B
)  <_  ( ( A  +  B )  +  ( A  +  B ) ) )
264recnd 7794 . . . . . . . . . 10  |-  ( ph  ->  ( A  +  B
)  e.  CC )
27262timesd 8962 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( A  +  B )
)  =  ( ( A  +  B )  +  ( A  +  B ) ) )
2825, 27breqtrrd 3956 . . . . . . . 8  |-  ( ph  ->  ( A  +  B
)  <_  ( 2  x.  ( A  +  B ) ) )
296, 4, 19, 23, 28letrd 7886 . . . . . . 7  |-  ( ph  ->  B  <_  ( 2  x.  ( A  +  B ) ) )
306, 19, 5, 29leadd2dd 8322 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  <_  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  ( 2  x.  ( A  +  B
) ) ) )
3130adantr 274 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  <_ 
( ( ( A  +  B )  x.  ( A  +  B
) )  +  ( 2  x.  ( A  +  B ) ) ) )
323, 9nn0opthlem1d 10466 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  <  C  <->  ( ( ( A  +  B )  x.  ( A  +  B )
)  +  ( 2  x.  ( A  +  B ) ) )  <  ( C  x.  C ) ) )
3332biimpa 294 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  ( 2  x.  ( A  +  B
) ) )  < 
( C  x.  C
) )
348, 21, 12, 31, 33lelttrd 7887 . . . 4  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  < 
( C  x.  C
) )
35 nn0addge1 9023 . . . . . 6  |-  ( ( ( C  x.  C
)  e.  RR  /\  D  e.  NN0 )  -> 
( C  x.  C
)  <_  ( ( C  x.  C )  +  D ) )
3611, 13, 35syl2anc 408 . . . . 5  |-  ( ph  ->  ( C  x.  C
)  <_  ( ( C  x.  C )  +  D ) )
3736adantr 274 . . . 4  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( C  x.  C )  <_  (
( C  x.  C
)  +  D ) )
388, 12, 16, 34, 37ltletrd 8185 . . 3  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  < 
( ( C  x.  C )  +  D
) )
398, 38gtned 7876 . 2  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( ( C  x.  C )  +  D )  =/=  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ) )
4039ex 114 1  |-  ( ph  ->  ( ( A  +  B )  <  C  ->  ( ( C  x.  C )  +  D
)  =/=  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480    =/= wne 2308   class class class wbr 3929  (class class class)co 5774   RRcr 7619    + caddc 7623    x. cmul 7625    < clt 7800    <_ cle 7801   2c2 8771   NN0cn0 8977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  nn0opthd  10468
  Copyright terms: Public domain W3C validator