ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthlem2d Unicode version

Theorem nn0opthlem2d 10125
Description: Lemma for nn0opth2 10128. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthd.2  |-  ( ph  ->  B  e.  NN0 )
nn0opthd.3  |-  ( ph  ->  C  e.  NN0 )
nn0opthd.4  |-  ( ph  ->  D  e.  NN0 )
Assertion
Ref Expression
nn0opthlem2d  |-  ( ph  ->  ( ( A  +  B )  <  C  ->  ( ( C  x.  C )  +  D
)  =/=  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) ) )

Proof of Theorem nn0opthlem2d
StepHypRef Expression
1 nn0opthd.1 . . . . . . . 8  |-  ( ph  ->  A  e.  NN0 )
2 nn0opthd.2 . . . . . . . 8  |-  ( ph  ->  B  e.  NN0 )
31, 2nn0addcld 8728 . . . . . . 7  |-  ( ph  ->  ( A  +  B
)  e.  NN0 )
43nn0red 8725 . . . . . 6  |-  ( ph  ->  ( A  +  B
)  e.  RR )
54, 4remulcld 7516 . . . . 5  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  RR )
62nn0red 8725 . . . . 5  |-  ( ph  ->  B  e.  RR )
75, 6readdcld 7515 . . . 4  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  RR )
87adantr 270 . . 3  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  e.  RR )
9 nn0opthd.3 . . . . . . 7  |-  ( ph  ->  C  e.  NN0 )
109nn0red 8725 . . . . . 6  |-  ( ph  ->  C  e.  RR )
1110, 10remulcld 7516 . . . . 5  |-  ( ph  ->  ( C  x.  C
)  e.  RR )
1211adantr 270 . . . 4  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( C  x.  C )  e.  RR )
13 nn0opthd.4 . . . . . . 7  |-  ( ph  ->  D  e.  NN0 )
1413nn0red 8725 . . . . . 6  |-  ( ph  ->  D  e.  RR )
1511, 14readdcld 7515 . . . . 5  |-  ( ph  ->  ( ( C  x.  C )  +  D
)  e.  RR )
1615adantr 270 . . . 4  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( ( C  x.  C )  +  D )  e.  RR )
17 2re 8490 . . . . . . . . 9  |-  2  e.  RR
1817a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  RR )
1918, 4remulcld 7516 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( A  +  B )
)  e.  RR )
205, 19readdcld 7515 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  ( 2  x.  ( A  +  B ) ) )  e.  RR )
2120adantr 270 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  ( 2  x.  ( A  +  B
) ) )  e.  RR )
22 nn0addge2 8718 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  A  e.  NN0 )  ->  B  <_  ( A  +  B ) )
236, 1, 22syl2anc 403 . . . . . . . 8  |-  ( ph  ->  B  <_  ( A  +  B ) )
24 nn0addge1 8717 . . . . . . . . . 10  |-  ( ( ( A  +  B
)  e.  RR  /\  ( A  +  B
)  e.  NN0 )  ->  ( A  +  B
)  <_  ( ( A  +  B )  +  ( A  +  B ) ) )
254, 3, 24syl2anc 403 . . . . . . . . 9  |-  ( ph  ->  ( A  +  B
)  <_  ( ( A  +  B )  +  ( A  +  B ) ) )
264recnd 7514 . . . . . . . . . 10  |-  ( ph  ->  ( A  +  B
)  e.  CC )
27262timesd 8656 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( A  +  B )
)  =  ( ( A  +  B )  +  ( A  +  B ) ) )
2825, 27breqtrrd 3871 . . . . . . . 8  |-  ( ph  ->  ( A  +  B
)  <_  ( 2  x.  ( A  +  B ) ) )
296, 4, 19, 23, 28letrd 7605 . . . . . . 7  |-  ( ph  ->  B  <_  ( 2  x.  ( A  +  B ) ) )
306, 19, 5, 29leadd2dd 8035 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  <_  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  ( 2  x.  ( A  +  B
) ) ) )
3130adantr 270 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  <_ 
( ( ( A  +  B )  x.  ( A  +  B
) )  +  ( 2  x.  ( A  +  B ) ) ) )
323, 9nn0opthlem1d 10124 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  <  C  <->  ( ( ( A  +  B )  x.  ( A  +  B )
)  +  ( 2  x.  ( A  +  B ) ) )  <  ( C  x.  C ) ) )
3332biimpa 290 . . . . 5  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  ( 2  x.  ( A  +  B
) ) )  < 
( C  x.  C
) )
348, 21, 12, 31, 33lelttrd 7606 . . . 4  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  < 
( C  x.  C
) )
35 nn0addge1 8717 . . . . . 6  |-  ( ( ( C  x.  C
)  e.  RR  /\  D  e.  NN0 )  -> 
( C  x.  C
)  <_  ( ( C  x.  C )  +  D ) )
3611, 13, 35syl2anc 403 . . . . 5  |-  ( ph  ->  ( C  x.  C
)  <_  ( ( C  x.  C )  +  D ) )
3736adantr 270 . . . 4  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( C  x.  C )  <_  (
( C  x.  C
)  +  D ) )
388, 12, 16, 34, 37ltletrd 7899 . . 3  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  < 
( ( C  x.  C )  +  D
) )
398, 38gtned 7595 . 2  |-  ( (
ph  /\  ( A  +  B )  <  C
)  ->  ( ( C  x.  C )  +  D )  =/=  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ) )
4039ex 113 1  |-  ( ph  ->  ( ( A  +  B )  <  C  ->  ( ( C  x.  C )  +  D
)  =/=  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1438    =/= wne 2255   class class class wbr 3845  (class class class)co 5652   RRcr 7347    + caddc 7351    x. cmul 7353    < clt 7520    <_ cle 7521   2c2 8471   NN0cn0 8671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-n0 8672  df-z 8749  df-uz 9018  df-iseq 9849  df-seq3 9850  df-exp 9951
This theorem is referenced by:  nn0opthd  10126
  Copyright terms: Public domain W3C validator