Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0opthlem2d | Unicode version |
Description: Lemma for nn0opth2 10670. (Contributed by Jim Kingdon, 31-Oct-2021.) |
Ref | Expression |
---|---|
nn0opthd.1 | |
nn0opthd.2 | |
nn0opthd.3 | |
nn0opthd.4 |
Ref | Expression |
---|---|
nn0opthlem2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opthd.1 | . . . . . . . 8 | |
2 | nn0opthd.2 | . . . . . . . 8 | |
3 | 1, 2 | nn0addcld 9204 | . . . . . . 7 |
4 | 3 | nn0red 9201 | . . . . . 6 |
5 | 4, 4 | remulcld 7962 | . . . . 5 |
6 | 2 | nn0red 9201 | . . . . 5 |
7 | 5, 6 | readdcld 7961 | . . . 4 |
8 | 7 | adantr 276 | . . 3 |
9 | nn0opthd.3 | . . . . . . 7 | |
10 | 9 | nn0red 9201 | . . . . . 6 |
11 | 10, 10 | remulcld 7962 | . . . . 5 |
12 | 11 | adantr 276 | . . . 4 |
13 | nn0opthd.4 | . . . . . . 7 | |
14 | 13 | nn0red 9201 | . . . . . 6 |
15 | 11, 14 | readdcld 7961 | . . . . 5 |
16 | 15 | adantr 276 | . . . 4 |
17 | 2re 8960 | . . . . . . . . 9 | |
18 | 17 | a1i 9 | . . . . . . . 8 |
19 | 18, 4 | remulcld 7962 | . . . . . . 7 |
20 | 5, 19 | readdcld 7961 | . . . . . 6 |
21 | 20 | adantr 276 | . . . . 5 |
22 | nn0addge2 9194 | . . . . . . . . 9 | |
23 | 6, 1, 22 | syl2anc 411 | . . . . . . . 8 |
24 | nn0addge1 9193 | . . . . . . . . . 10 | |
25 | 4, 3, 24 | syl2anc 411 | . . . . . . . . 9 |
26 | 4 | recnd 7960 | . . . . . . . . . 10 |
27 | 26 | 2timesd 9132 | . . . . . . . . 9 |
28 | 25, 27 | breqtrrd 4026 | . . . . . . . 8 |
29 | 6, 4, 19, 23, 28 | letrd 8055 | . . . . . . 7 |
30 | 6, 19, 5, 29 | leadd2dd 8491 | . . . . . 6 |
31 | 30 | adantr 276 | . . . . 5 |
32 | 3, 9 | nn0opthlem1d 10666 | . . . . . 6 |
33 | 32 | biimpa 296 | . . . . 5 |
34 | 8, 21, 12, 31, 33 | lelttrd 8056 | . . . 4 |
35 | nn0addge1 9193 | . . . . . 6 | |
36 | 11, 13, 35 | syl2anc 411 | . . . . 5 |
37 | 36 | adantr 276 | . . . 4 |
38 | 8, 12, 16, 34, 37 | ltletrd 8354 | . . 3 |
39 | 8, 38 | gtned 8044 | . 2 |
40 | 39 | ex 115 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wcel 2146 wne 2345 class class class wbr 3998 (class class class)co 5865 cr 7785 caddc 7789 cmul 7791 clt 7966 cle 7967 c2 8941 cn0 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-n0 9148 df-z 9225 df-uz 9500 df-seqfrec 10414 df-exp 10488 |
This theorem is referenced by: nn0opthd 10668 |
Copyright terms: Public domain | W3C validator |