| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul4sq | Unicode version | ||
| Description: Euler's four-square
identity: The product of two sums of four squares
is also a sum of four squares. This is usually quoted as an explicit
formula involving eight real variables; we save some time by working
with complex numbers (gaussian integers) instead, so that we only have
to work with four variables, and also hiding the actual formula for the
product in the proof of mul4sqlem 12831. (For the curious, the explicit
formula that is used is
|
| Ref | Expression |
|---|---|
| 4sq.1 |
|
| Ref | Expression |
|---|---|
| mul4sq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 |
. . 3
| |
| 2 | 1 | 4sqlem4 12830 |
. 2
|
| 3 | 1 | 4sqlem4 12830 |
. 2
|
| 4 | reeanv 2678 |
. . 3
| |
| 5 | reeanv 2678 |
. . . . 5
| |
| 6 | simpll 527 |
. . . . . . . . . . . . 13
| |
| 7 | gzabssqcl 12819 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . . . . . 12
|
| 9 | simprl 529 |
. . . . . . . . . . . . 13
| |
| 10 | gzabssqcl 12819 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . . . 12
|
| 12 | 8, 11 | nn0addcld 9387 |
. . . . . . . . . . 11
|
| 13 | 12 | nn0cnd 9385 |
. . . . . . . . . 10
|
| 14 | 13 | div1d 8888 |
. . . . . . . . 9
|
| 15 | simplr 528 |
. . . . . . . . . . . . 13
| |
| 16 | gzabssqcl 12819 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . . 12
|
| 18 | simprr 531 |
. . . . . . . . . . . . 13
| |
| 19 | gzabssqcl 12819 |
. . . . . . . . . . . . 13
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . . . . 12
|
| 21 | 17, 20 | nn0addcld 9387 |
. . . . . . . . . . 11
|
| 22 | 21 | nn0cnd 9385 |
. . . . . . . . . 10
|
| 23 | 22 | div1d 8888 |
. . . . . . . . 9
|
| 24 | 14, 23 | oveq12d 5985 |
. . . . . . . 8
|
| 25 | eqid 2207 |
. . . . . . . . 9
| |
| 26 | eqid 2207 |
. . . . . . . . 9
| |
| 27 | 1nn 9082 |
. . . . . . . . . 10
| |
| 28 | 27 | a1i 9 |
. . . . . . . . 9
|
| 29 | gzsubcl 12818 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | adantr 276 |
. . . . . . . . . . . 12
|
| 31 | gzcn 12810 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . . 11
|
| 33 | 32 | div1d 8888 |
. . . . . . . . . 10
|
| 34 | 33, 30 | eqeltrd 2284 |
. . . . . . . . 9
|
| 35 | gzsubcl 12818 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | gzcn 12810 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . . 11
|
| 39 | 38 | div1d 8888 |
. . . . . . . . . 10
|
| 40 | 39, 36 | eqeltrd 2284 |
. . . . . . . . 9
|
| 41 | 14, 12 | eqeltrd 2284 |
. . . . . . . . 9
|
| 42 | 1, 6, 9, 15, 18, 25, 26, 28, 34, 40, 41 | mul4sqlem 12831 |
. . . . . . . 8
|
| 43 | 24, 42 | eqeltrrd 2285 |
. . . . . . 7
|
| 44 | oveq12 5976 |
. . . . . . . 8
| |
| 45 | 44 | eleq1d 2276 |
. . . . . . 7
|
| 46 | 43, 45 | syl5ibrcom 157 |
. . . . . 6
|
| 47 | 46 | rexlimdvva 2633 |
. . . . 5
|
| 48 | 5, 47 | biimtrrid 153 |
. . . 4
|
| 49 | 48 | rexlimivv 2631 |
. . 3
|
| 50 | 4, 49 | sylbir 135 |
. 2
|
| 51 | 2, 3, 50 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-gz 12808 |
| This theorem is referenced by: 4sqlem19 12847 |
| Copyright terms: Public domain | W3C validator |