| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul4sq | Unicode version | ||
| Description: Euler's four-square
identity: The product of two sums of four squares
is also a sum of four squares. This is usually quoted as an explicit
formula involving eight real variables; we save some time by working
with complex numbers (gaussian integers) instead, so that we only have
to work with four variables, and also hiding the actual formula for the
product in the proof of mul4sqlem 12587. (For the curious, the explicit
formula that is used is
|
| Ref | Expression |
|---|---|
| 4sq.1 |
|
| Ref | Expression |
|---|---|
| mul4sq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 |
. . 3
| |
| 2 | 1 | 4sqlem4 12586 |
. 2
|
| 3 | 1 | 4sqlem4 12586 |
. 2
|
| 4 | reeanv 2667 |
. . 3
| |
| 5 | reeanv 2667 |
. . . . 5
| |
| 6 | simpll 527 |
. . . . . . . . . . . . 13
| |
| 7 | gzabssqcl 12575 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . . . . . 12
|
| 9 | simprl 529 |
. . . . . . . . . . . . 13
| |
| 10 | gzabssqcl 12575 |
. . . . . . . . . . . . 13
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . . . 12
|
| 12 | 8, 11 | nn0addcld 9323 |
. . . . . . . . . . 11
|
| 13 | 12 | nn0cnd 9321 |
. . . . . . . . . 10
|
| 14 | 13 | div1d 8824 |
. . . . . . . . 9
|
| 15 | simplr 528 |
. . . . . . . . . . . . 13
| |
| 16 | gzabssqcl 12575 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . . 12
|
| 18 | simprr 531 |
. . . . . . . . . . . . 13
| |
| 19 | gzabssqcl 12575 |
. . . . . . . . . . . . 13
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . . . . 12
|
| 21 | 17, 20 | nn0addcld 9323 |
. . . . . . . . . . 11
|
| 22 | 21 | nn0cnd 9321 |
. . . . . . . . . 10
|
| 23 | 22 | div1d 8824 |
. . . . . . . . 9
|
| 24 | 14, 23 | oveq12d 5943 |
. . . . . . . 8
|
| 25 | eqid 2196 |
. . . . . . . . 9
| |
| 26 | eqid 2196 |
. . . . . . . . 9
| |
| 27 | 1nn 9018 |
. . . . . . . . . 10
| |
| 28 | 27 | a1i 9 |
. . . . . . . . 9
|
| 29 | gzsubcl 12574 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | adantr 276 |
. . . . . . . . . . . 12
|
| 31 | gzcn 12566 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . . 11
|
| 33 | 32 | div1d 8824 |
. . . . . . . . . 10
|
| 34 | 33, 30 | eqeltrd 2273 |
. . . . . . . . 9
|
| 35 | gzsubcl 12574 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | gzcn 12566 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . . 11
|
| 39 | 38 | div1d 8824 |
. . . . . . . . . 10
|
| 40 | 39, 36 | eqeltrd 2273 |
. . . . . . . . 9
|
| 41 | 14, 12 | eqeltrd 2273 |
. . . . . . . . 9
|
| 42 | 1, 6, 9, 15, 18, 25, 26, 28, 34, 40, 41 | mul4sqlem 12587 |
. . . . . . . 8
|
| 43 | 24, 42 | eqeltrrd 2274 |
. . . . . . 7
|
| 44 | oveq12 5934 |
. . . . . . . 8
| |
| 45 | 44 | eleq1d 2265 |
. . . . . . 7
|
| 46 | 43, 45 | syl5ibrcom 157 |
. . . . . 6
|
| 47 | 46 | rexlimdvva 2622 |
. . . . 5
|
| 48 | 5, 47 | biimtrrid 153 |
. . . 4
|
| 49 | 48 | rexlimivv 2620 |
. . 3
|
| 50 | 4, 49 | sylbir 135 |
. 2
|
| 51 | 2, 3, 50 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-gz 12564 |
| This theorem is referenced by: 4sqlem19 12603 |
| Copyright terms: Public domain | W3C validator |