ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul4sq Unicode version

Theorem mul4sq 12917
Description: Euler's four-square identity: The product of two sums of four squares is also a sum of four squares. This is usually quoted as an explicit formula involving eight real variables; we save some time by working with complex numbers (gaussian integers) instead, so that we only have to work with four variables, and also hiding the actual formula for the product in the proof of mul4sqlem 12916. (For the curious, the explicit formula that is used is  (  |  a  |  ^ 2  +  |  b  |  ^
2 ) (  |  c  |  ^ 2  +  |  d  |  ^ 2 )  =  |  a *  x.  c  +  b  x.  d *  |  ^ 2  +  | 
a *  x.  d  -  b  x.  c
*  |  ^ 2.) (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
mul4sq  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B
)  e.  S )
Distinct variable groups:    w, n, x, y, z    B, n    A, n    S, n
Allowed substitution hints:    A( x, y, z, w)    B( x, y, z, w)    S( x, y, z, w)

Proof of Theorem mul4sq
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
214sqlem4 12915 . 2  |-  ( A  e.  S  <->  E. a  e.  ZZ[_i]  E. b  e.  ZZ[_i]  A  =  ( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b
) ^ 2 ) ) )
314sqlem4 12915 . 2  |-  ( B  e.  S  <->  E. c  e.  ZZ[_i]  E. d  e.  ZZ[_i]  B  =  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d
) ^ 2 ) ) )
4 reeanv 2701 . . 3  |-  ( E. a  e.  ZZ[_i]  E. c  e.  ZZ[_i] 
( E. b  e.  ZZ[_i]  A  =  ( (
( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  E. d  e.  ZZ[_i]  B  =  ( ( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) )  <->  ( E. a  e.  ZZ[_i]  E. b  e.  ZZ[_i]  A  =  ( (
( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  E. c  e.  ZZ[_i]  E. d  e.  ZZ[_i]  B  =  ( (
( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) ) )
5 reeanv 2701 . . . . 5  |-  ( E. b  e.  ZZ[_i]  E. d  e.  ZZ[_i] 
( A  =  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  B  =  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d
) ^ 2 ) ) )  <->  ( E. b  e.  ZZ[_i]  A  =  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  E. d  e.  ZZ[_i]  B  =  ( ( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) ) )
6 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  a  e.  ZZ[_i]
)
7 gzabssqcl 12904 . . . . . . . . . . . . 13  |-  ( a  e.  ZZ[_i]  ->  ( ( abs `  a ) ^
2 )  e.  NN0 )
86, 7syl 14 . . . . . . . . . . . 12  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( abs `  a
) ^ 2 )  e.  NN0 )
9 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  b  e.  ZZ[_i]
)
10 gzabssqcl 12904 . . . . . . . . . . . . 13  |-  ( b  e.  ZZ[_i]  ->  ( ( abs `  b ) ^
2 )  e.  NN0 )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( abs `  b
) ^ 2 )  e.  NN0 )
128, 11nn0addcld 9426 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  e.  NN0 )
1312nn0cnd 9424 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  e.  CC )
1413div1d 8927 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /  1 )  =  ( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) ) )
15 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  c  e.  ZZ[_i]
)
16 gzabssqcl 12904 . . . . . . . . . . . . 13  |-  ( c  e.  ZZ[_i]  ->  ( ( abs `  c ) ^
2 )  e.  NN0 )
1715, 16syl 14 . . . . . . . . . . . 12  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( abs `  c
) ^ 2 )  e.  NN0 )
18 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  d  e.  ZZ[_i]
)
19 gzabssqcl 12904 . . . . . . . . . . . . 13  |-  ( d  e.  ZZ[_i]  ->  ( ( abs `  d ) ^
2 )  e.  NN0 )
2018, 19syl 14 . . . . . . . . . . . 12  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( abs `  d
) ^ 2 )  e.  NN0 )
2117, 20nn0addcld 9426 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) )  e.  NN0 )
2221nn0cnd 9424 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) )  e.  CC )
2322div1d 8927 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) )  /  1 )  =  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) )
2414, 23oveq12d 6019 . . . . . . . 8  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b
) ^ 2 ) )  /  1 )  x.  ( ( ( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) )  /  1
) )  =  ( ( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  x.  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d
) ^ 2 ) ) ) )
25 eqid 2229 . . . . . . . . 9  |-  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  =  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )
26 eqid 2229 . . . . . . . . 9  |-  ( ( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) )  =  ( ( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) )
27 1nn 9121 . . . . . . . . . 10  |-  1  e.  NN
2827a1i 9 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  1  e.  NN )
29 gzsubcl 12903 . . . . . . . . . . . . 13  |-  ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i]
)  ->  ( a  -  c )  e.  ZZ[_i]
)
3029adantr 276 . . . . . . . . . . . 12  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
a  -  c )  e.  ZZ[_i] )
31 gzcn 12895 . . . . . . . . . . . 12  |-  ( ( a  -  c )  e.  ZZ[_i]  ->  ( a  -  c )  e.  CC )
3230, 31syl 14 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
a  -  c )  e.  CC )
3332div1d 8927 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( a  -  c
)  /  1 )  =  ( a  -  c ) )
3433, 30eqeltrd 2306 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( a  -  c
)  /  1 )  e.  ZZ[_i] )
35 gzsubcl 12903 . . . . . . . . . . . . 13  |-  ( ( b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
)  ->  ( b  -  d )  e.  ZZ[_i]
)
3635adantl 277 . . . . . . . . . . . 12  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
b  -  d )  e.  ZZ[_i] )
37 gzcn 12895 . . . . . . . . . . . 12  |-  ( ( b  -  d )  e.  ZZ[_i]  ->  ( b  -  d )  e.  CC )
3836, 37syl 14 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
b  -  d )  e.  CC )
3938div1d 8927 . . . . . . . . . 10  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( b  -  d
)  /  1 )  =  ( b  -  d ) )
4039, 36eqeltrd 2306 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( b  -  d
)  /  1 )  e.  ZZ[_i] )
4114, 12eqeltrd 2306 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /  1 )  e. 
NN0 )
421, 6, 9, 15, 18, 25, 26, 28, 34, 40, 41mul4sqlem 12916 . . . . . . . 8  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b
) ^ 2 ) )  /  1 )  x.  ( ( ( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) )  /  1
) )  e.  S
)
4324, 42eqeltrrd 2307 . . . . . . 7  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  x.  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d
) ^ 2 ) ) )  e.  S
)
44 oveq12 6010 . . . . . . . 8  |-  ( ( A  =  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  B  =  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d
) ^ 2 ) ) )  ->  ( A  x.  B )  =  ( ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  x.  (
( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) ) )
4544eleq1d 2298 . . . . . . 7  |-  ( ( A  =  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  B  =  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d
) ^ 2 ) ) )  ->  (
( A  x.  B
)  e.  S  <->  ( (
( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  x.  (
( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) )  e.  S ) )
4643, 45syl5ibrcom 157 . . . . . 6  |-  ( ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i] )  /\  (
b  e.  ZZ[_i]  /\  d  e.  ZZ[_i]
) )  ->  (
( A  =  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  B  =  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d
) ^ 2 ) ) )  ->  ( A  x.  B )  e.  S ) )
4746rexlimdvva 2656 . . . . 5  |-  ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i]
)  ->  ( E. b  e.  ZZ[_i]  E. d  e.  ZZ[_i] 
( A  =  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  B  =  ( ( ( abs `  c ) ^ 2 )  +  ( ( abs `  d
) ^ 2 ) ) )  ->  ( A  x.  B )  e.  S ) )
485, 47biimtrrid 153 . . . 4  |-  ( ( a  e.  ZZ[_i]  /\  c  e.  ZZ[_i]
)  ->  ( ( E. b  e.  ZZ[_i]  A  =  ( ( ( abs `  a ) ^ 2 )  +  ( ( abs `  b
) ^ 2 ) )  /\  E. d  e.  ZZ[_i]  B  =  ( (
( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) )  -> 
( A  x.  B
)  e.  S ) )
4948rexlimivv 2654 . . 3  |-  ( E. a  e.  ZZ[_i]  E. c  e.  ZZ[_i] 
( E. b  e.  ZZ[_i]  A  =  ( (
( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  E. d  e.  ZZ[_i]  B  =  ( ( ( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) )  -> 
( A  x.  B
)  e.  S )
504, 49sylbir 135 . 2  |-  ( ( E. a  e.  ZZ[_i]  E. b  e.  ZZ[_i]  A  =  ( ( ( abs `  a
) ^ 2 )  +  ( ( abs `  b ) ^ 2 ) )  /\  E. c  e.  ZZ[_i]  E. d  e.  ZZ[_i]  B  =  ( (
( abs `  c
) ^ 2 )  +  ( ( abs `  d ) ^ 2 ) ) )  -> 
( A  x.  B
)  e.  S )
512, 3, 50syl2anb 291 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  x.  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    x. cmul 8004    - cmin 8317    / cdiv 8819   NNcn 9110   2c2 9161   NN0cn0 9369   ZZcz 9446   ^cexp 10760   abscabs 11508   ZZ[_i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-gz 12893
This theorem is referenced by:  4sqlem19  12932
  Copyright terms: Public domain W3C validator